BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised)

Term-End Examination
"5411
June, 2017

BCS-012 : BASIC MATHEMATICS

Time: 3 hours
Maximum Marks : 100
Note: Question number 1 is compulsory. Attempt any three questions from the remaining four questions.

1. (a) Show that

$$
\left|\begin{array}{lll}
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{array}\right|=(b-a)(c-a)(c-b)
$$

(b) Using determinants, find the area of the triangle whose vertices are $(1,2),(-2,3)$ and $(-3,-4)$.
(c) Use the principle of mathematical induction to prove that

$$
\frac{1}{(1)(2)}+\frac{1}{(2)(3)}+\ldots+\frac{1}{n(n+1)}=\frac{n}{n+1}
$$

$$
\text { for every natural number } n \text {. }
$$

(d) If the first term of an A.P. is 22, the common difference is -4 , and the sum to n terms is 64 , find n .
(e) Find the points of discontinuity of the following function :

$$
f(x)=\left\{\begin{array}{lll}
x^{2}, & \text { if } & x>0 \\
x+3, & \text { if } & x \leq 0
\end{array} .\right.
$$

(f) If $y=a x+\frac{b}{x}$, show that

$$
\begin{equation*}
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-y=0 \tag{5}
\end{equation*}
$$

(g) Prove that the three medians of a triangle meet at a point called centroid of the triangle which divides each of the medians in the ratio 2:1.
(h) Show that $|\vec{a}| \vec{b}+|\vec{b}| \vec{a}$ is perpendicular to $|\vec{a}| \vec{b}-|\vec{b}| \vec{a}$, for any two non-zero vectors \vec{a} and \vec{b}.
2. (a) Solve the following system of linear equations using Cramer's rule :

$$
\mathrm{x}+\mathrm{y}=0, \quad \mathrm{y}+\mathrm{z}=1, \quad \mathrm{z}+\mathrm{x}=3
$$

(b) If $A=\left[\begin{array}{cc}1 & -2 \\ 2 & -1\end{array}\right], \quad B=\left[\begin{array}{cc}a & 1 \\ b & -1\end{array}\right] \quad$ and
$(A+B)^{2}=A^{2}+B^{2}, f$
2
(c) Reduce the matrix

$$
A=\left[\begin{array}{ccc}
5 & 3 & 8 \\
0 & 1 & 1 \\
1 & -1 & 0
\end{array}\right]
$$

to normal form and hence find its rank.
5
(d) Show that $\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)$ is a multiple of 6 for every natural number n.
3. (a) Find the sum of an infinite G.P. whose first term is 28 and fourth term is $\frac{4}{49}$.
(b) Use De Moivre's theorem to find $(\sqrt{3}+i)^{3}$. 5
(c) If 1, ω, ω^{2} are cube roots of unity, show that

$$
(2-\omega)\left(2-\omega^{2}\right)\left(2-\omega^{10}\right)\left(2-\omega^{11}\right)=49 . \quad 5
$$

(d) Solve the equation

$$
2 x^{3}-15 x^{2}+37 x-30=0
$$

given that the roots of the equation are in A.P.
4. (a) A young child is flying a kite which is at a height of 50 m . The wind is carrying the kite horizontally away from the child at a speed of $6.5 \mathrm{~m} / \mathrm{s}$. How fast must the kite string be let out when the string is 130 m ?
(b) Using first derivative test, find the local maxima and minima of the function

$$
\begin{equation*}
f(x)=x^{3}-12 x \tag{5}
\end{equation*}
$$

(c) Evaluate the integral

$$
\begin{equation*}
I=\int \frac{x^{2}}{(x+1)^{3}} d x . \tag{5}
\end{equation*}
$$

(d) Find the length of the curve

$$
\begin{equation*}
y=3+\frac{1}{2}(x) \text { from }(0,3) \text { to }(2,4) \tag{5}
\end{equation*}
$$

5. (a) If $\vec{a}, \vec{b}, \vec{c}$ are coplanar, then prove that $\vec{a}+\vec{b}, \vec{b}+\vec{c}$ and $\vec{c}+\vec{a}$ are also coplanar.

5
(b) Find the Vector and Cartesian equations of the line passing through the points $(-2,0,3)$ and ($3,5,-2$).
(c) Best Gift Packs company manufactures two types of gift packs, type A and type B. Type A requires 5 minutes each for cutting and 10 minutes each for assembling it. Type B requires 8 minutes each for cutting and 8 minutes each for assembling. There are at most 200 minutes available for cutting and at most 4 hours available for assembling. The profit is $₹ 50$ each for type A and ₹ 25 each for type B. How many gift packs of each type should the company manufacture in order to maximise the profit?

