Ph.D. PROGRAMME IN DISABILITY STUDIES

Term-End Examination
00149
June, 2016

RMD-002 : STATISTICAL TECHNIQUES IN DISABILITY STUDIES

Time : 3 hours \quad Maximum Marks : 100
Note : All sections are compulsory. Read the instructions
given in each section carefully. Use of simple calculator is
permitted.

SECTION A

Write short notes on the following in about 50 words each (any ten) :

1. Level of Significance
2. Quartile Deviation
3. Histogram
4. Partial Correlation
5. Multiple Regression
6. Path Analysis
7. MANCOVA

RMD-002
8. Factor Loadings
9. Statistical Package for Social Sciences (SPSS)
10. Goodness of fit test
11. Ratio and Interval Scale

SECTION B

Answer the following questions in 200 words each (any five) : $5 \times 6=30$
12. Describe the application of techniques for prevalence and incidence. 6
13. Discuss the significance of graphical methods of data representation. 6
14. Compute mean, median and mode for the following data : $2+2+2$
$12,10,13,14,18,12,14,12,12,18,19,20,21,13$, 22
15. Compute the standard deviation for the following data : 6
$10,12,13,14,15,16$
16. Describe Normal Distribution with a suitable diagram. 6
17. Describe Cluster Analysis. 6

SECTION C

Answer the following questions in 500 words each (any two): $2 \times 15=30$
18. Define Correlation. Compute Spearman's rho for the following data: $4+11$

	A	B	C	D	E	F	G	H	I	J
Data X :	30	20	10	25	9	18	14	12	7	5
Data Y :	8	10	20	7	18	16	15	4	24	25

19. Define and differentiate between parametric and non-parametric statistics with suitable examples. $6+9$
20. Describe the steps involved in computation of Chi-square test. Compute Chi-square for the following data :

Responses

	Yes	No	Undecided
Males	10	20	30
Females	40	40	50

Critical value :
5.991 at 0.05 level of significance
$9 \cdot 210$ at 0.01 level of significance

