RPC-002 : ADV ANCED PSYCHOLOGICAL STATISTICS

Time : 3 hours
Maximum Marks : 100
Note : (i) All sections are compulsory.
(ii) Read the instructions carefully before attempting each section.
(iii) Use of simple calculator is permitted.

SECTION - A

Answer any ten of the following questions in about 50 words each.
$10 \times 4=40$

1. Nominal and Interval Scale
2. Median and Mode
3. Average Deviation
4. Partial Correlation
5. Regression
6. Sign test
7. Level of significance
8. Hypothesis testing
9. Histogram
10. Type - I and Type - II errors
11. Chi - square test

SECTION - B

Answer any five of the following questions in about 200 words each :
12. Define Statistics. Differentiate between descriptive $2+4$ and inferential statistics.
13. Compute Spearman's Rank coefficient of 6 correlation for the following data :

	A	B	C	D	E
Data X:	19	18	16	15	13
Data Y:	18	19	17	16	14

14. What are the conditions under which t - test can 6 be used ? Give a suitable example.
15. Compute Chi - square for the following data :

	Always	Frequently	Rarely	Never
Males	10	30	10	10
Females	20	40	20	30

Critical value $=11.345$ at 0.01 level of significance
$=7.815$ at 0.05 level of significance
16. Compute Mann Whitney U test for the following data :
Data 1: 12, 25, 20, 16, 17
Data 2 : 14, 15, 21, 18, 19
17. Define Variance. Elucidate the steps for $\mathbf{2 + 4}$ Two - way Anova.

SECTION - C

Answer any two of the following questions in about 500 words each :

2×15=30
18. Describe normal curve with the help of suitable $\mathbf{1 0 + 5}$ diagram and discuss its characteristics. Discuss divergence from normality.
19. Compute ANOVA for the following data :

Group A : 2, 3, 4, 2, 6, 2, 3, 3, 2, 3
Group B : 4, 2, 3, 2, 3, 3, 2, 3, 2, 2.
Group C : 2, 4, 2, 3, 2, 3, 3, 3, 3, 2
Critical Value $=$
99.50 at 0.01 level of significance
19.50 at 0.05 level of significance
20. Differentiate between parametric and non-parametric statistics. Compute Kendalls' tau for the following data :

	A	B	C	D	E
$\mathrm{X}:$	6	7	8	10	4
$\mathrm{Y}:$	7	8	4	5	3

