No. of Printed Pages: 4

70596

Time: 3 hours

MCH-004

Maximum Marks: 75

P.G. DIPLOMA IN ANALYTICAL CHEMISTRY (PGDAC)

Term-End Examination June, 2016

MCH-004 : ELECTROANALYTICAL AND OTHER METHODS

Note: Attempt any five questions. All questions carry equal marks.

- 1. (a) What do you understand by cell potential?

 Describe a Galvanic cell and write an expression for its cell potential.
 - (b) Explain the term Coulometry and list the different types of coulometric methods. 5
 - (c) What are the characteristics of a reference electrode? Describe the construction of hydrogen electrode with a suitable diagram.
- 2. (a) Define the units of radioactivity, Curie (Ci) and Becquerel (Bq). Calculate the strength of 9.6 ng of 198 Au ($t_{1/2} = 2.7$ d) in Curie.

5

5

5

	(D)	conductivity for an electrolyte. Explain how they are related to each other.	5
	(c)	The conductivity of a 0·1 M HCl solution is $0.0394~\Omega^{-1}~\mathrm{cm}^{-1}$. What is the molar conductivity of the solution?	5
3.	(a)	Explain anodic stripping voltammetry with the help of a suitable illustration.	5
	(b)	What is meant by diffusion current? Write down the Ilkovic equation explaining all the terms.	5
	(c)	Explain the difference between controlled potential coulometry and constant current coulometry.	5
4.	(a)	What do you mean by thermogravimetric analysis (TGA)? Describe the sources of errors in TGA briefly.	5
	(b)	Explain the principle of differential thermal analysis. Draw a suitable diagram of a differential thermal analyzer.	5
	(c)	Explain the difference between thermometric and classical titrations. Draw the nature of titration curve in both the cases.	5

5.	(a)	Discuss the important criteria for the choice	
		of radiotracer. Which radioisotope will you	
		use for the determination of Mn in steel, 54 Mn ($t_{1/2} = 312$ d) or 56 Mn($t_{1/2} = 2.56$ h)?	5
	(b)	Explain the technique isotope dilution analysis (IDA) and derive its equation for the determination of percentage content of unknown.	5
	(c)	What do you mean by polarisation? Discuss concentration polarisation and the importance of overvoltage.	5
6.	(a)	Explain linear sweep voltammetry and sampled DC polarography.	5
	(b)	Discuss the terms polarography and the dropping mercury electrode (DME).	5
	(c)	Define the terms Kinetic currents and Catalytic currents. Distinguish between the two.	5
7.	(a)	Draw the thermogravimetric curve for a mixture of MgCO ₃ and CaCO ₃ . How would	_
		you calculate the masses of Mg and Ca?	5
	(b)	How will you analyze biological materials with the help of differential thermal analysis?	5
MCH-004		•	
		3 P.T.(J.

(c) Explain the principle of neutron activation analysis and derive its equation for the determination of concentration by comparator method.

5

- 8. Write brief notes on any **five** of the following: $5\times 3=15$
 - (a) Liquid Junction Potential
 - (b) Amperometry
 - (c) Sources of Neutrons
 - (d) Ionic Product of Water
 - (e) Cyclic Voltammetry
 - (f) Radioimmunoassay