M.Sc. (MATHEMATICS WITH APPLICATIONS
 IN COMPUTER SCIENCE)
 M.Sc. (MACS)

ロIG4G Term-End Examination
June, 2016

MMTE-007 : SOFT COMPUTING AND ITS APPLICATIONS

Time: 2 hours
Maximum Marks : 50
(Weightage: 50\%)

Note:
(i) Question no. 7 is compulsory.
(ii) Attempt any four questions from questions no. 1 to 6.
(iii) Use of calculator is not allowed.

1. (a) Let A and B be two fuzzy sets as given below :

$$
\begin{aligned}
& A=\left\{\frac{0.5}{\text { Mohan }}, \frac{0.9}{\text { Sohan }}, \frac{0.7}{\text { John }}, \frac{0}{\text { Abdul }}, \frac{0.2}{\text { Abraham }}\right\} \\
& \mathbf{B}=\left\{\frac{0.75}{\text { Mohan }}, \frac{0.4}{\text { Sohan }}, \frac{0}{\text { John }}, \frac{0.8}{\text { Abdul }}, \frac{0}{\text { Abraham }}\right\}
\end{aligned}
$$

(i) Universe of discourse for sets A and B.
(ii) Compliment of sets A and B.
(iii) $\mathrm{A} \cap \mathrm{B}$
(iv) $\mathrm{A} \cup \mathrm{B}$
(b) Determine the α-cut of the fuzzy set (A) as given below, at 0.7 and 0.2 :
$\mathrm{A}=\left\{\frac{0}{10}, \frac{0}{20}, \frac{0.2}{30}, \frac{0.8}{40}, \frac{1 \cdot 0}{50}, \frac{1.0}{60}, \frac{0.6}{70}, \frac{0.2}{80}, \frac{0}{90}, \frac{0}{100}\right\}$
Compare the α-cut of two outcomes, and give comments for status of α-value variation.
(c) Consider the following travelling salesman problem involving 10 cities :

Parent 1: A B C D E F G H I J
Parent 2: E G I D C B J H A F
Determine the children solution using order crossover (\#1), assuming $4^{\text {th }}$ and $8^{\text {th }}$ sites as crossovers and cyclic crossover with $4^{\text {th }}$ position as initial position.
2. Determine the new cluster center, using Fuzzy C-Mean (FCM) algorithm. Perform only one iteration. The relevant data is given below :
(a) Dataset for features f_{1} and f_{2} :

Point	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
f_{1}	2	4	7	11	12	14
f_{2}	12	9	13	5	7	4

(b) The number of clusters are 2 and the value of parameter which influence membership grade (m) is 2.
(c) The initial cluster centers are $v_{1}=(6,6)$ and $\mathrm{v}_{2}=(11,11)$.
3. Draw the multilayer architecture and determine the updated weights for the first input of the training set given below after one iteration :

Input		Output
I_{1}	I_{2}	O
0.3	-0.2	0.2
0.4	0.6	0.3
0.6	-0.2	0.1

The initial vectors are $[W]^{0}=\left[\begin{array}{c}0.3 \\ -0.4\end{array}\right]$ and

$$
[\mathrm{V}]^{0}=\left[\begin{array}{cc}
0.2 & 0.5 \\
-0.1 & 0.3
\end{array}\right] . \text { Assume that the activation }
$$

function is sigmoidal function, and learning rates are $\alpha=1$ and $\eta=0.5$.
4. Approximate the function $f(x)=1+\cos \pi x$ for $-1 \leq x \leq 1$, by solving 1-2-1 network, using Back propagation algorithm. The weighted structure and initial input are as follows :
(a) Weighted structure

$$
\begin{aligned}
& {[\mathbf{W}]^{0}=\left[\begin{array}{c}
-0.25 \\
-0.40
\end{array}\right], \text { bias } \phi_{(0)}^{(1)}=\left[\begin{array}{c}
-0.50 \\
-0.1
\end{array}\right]} \\
& {[\mathbf{V}]^{0}=\left[\begin{array}{ll}
0.1 & -0.2
\end{array}\right], \text { bias } \phi_{(0)}^{(2)}=[0.5]}
\end{aligned}
$$

(b) Initial input is 1 .
5. (a) Compute the output for the neurons in the Kohonen networks, the related data is given below :
(i) Input to Kohonen neural network

$$
\begin{aligned}
& \text { Input Neuron }-1\left(\mathrm{I}_{1}\right)=0.5 \\
& \text { Input Neuron- } 2\left(\mathrm{I}_{2}\right)=0.75
\end{aligned}
$$

(ii) Connected weights between the neurons are as given below :

$\mathrm{I}_{1} \rightarrow \mathrm{O}_{1}$	0.1
$\mathrm{I}_{2} \rightarrow \mathrm{O}_{1}$	0.2
$\mathrm{I}_{1} \rightarrow \mathrm{O}_{2}$	0.3
$\mathrm{I}_{2} \rightarrow \mathrm{O}_{2}$	0.4

(b) Find the length and order of the following schema:
(i) $\mathrm{S}_{1}=1 * * 00 * 1 * *$
(ii) $\mathrm{S}_{2}=* 00 * 1 * *$
(iii) $\mathrm{S}_{3}=* * * 0 * * * *$
(iv) $\mathrm{S}_{4}=* 1 * 01 *$
6. (a) Verify whether the Genetic Algorithm (GA) improves the solution from one generation to the next generation, for the function given below :

$$
\begin{aligned}
& \text { Maximize } f(x)=\sqrt{x} \\
& \text { subject to } 1 \leq x \leq 16
\end{aligned}
$$

Assume that chromosomes of length 6 are created at random and modified by Roulette-wheel selection.
(b) Consider a Hopfield network whose weight matrix is given by

$$
\mathbf{W}=\frac{1}{3}\left[\begin{array}{rrr}
0 & -2 & 2 \\
-2 & 0 & -2 \\
2 & -2 & 0
\end{array}\right]
$$

Consider the two test input vectors

$$
P_{1}=\left[\begin{array}{lll}
1 & -1 & 1
\end{array}\right] \text { and } \mathbf{P}_{2}=\left[\begin{array}{lll}
-1 & 1 & -1
\end{array}\right] .
$$

Check whether the output state vectors satisfy alignment conditions.
7. State whether the following statements are true or false. Give reasons for your answers. $5 \times 2=10$
(a) If a 3 -input neuron is trained to output a zero when the input is 110 and output one when the input is 111, then after generalization, the output will be zero when the input is 000 or 010 or $\mathbf{1 1 0}$ or 100 .
(b) The length of chromosomes to determine maximum value of the set

$$
S=\{x \mid 0 \leq x \leq 4096\} \text { is } 12 .
$$

(c) The fuzzy relation
$R=\left[\begin{array}{ccccc}1 & 0.6 & 0 & 0.2 & 0.3 \\ 0.6 & 1 & 0.4 & 0 & 0.8 \\ 0 & 0.4 & 1 & 0 & 0 \\ 0.2 & 0 & 0 & 1 & 0.5 \\ 0.3 & 0.8 & 0 & 0.5 & 1\end{array}\right]$
is an equivalence relation.
(d) The backpropagation algorithm is used for both classification and clustering.
(e) In a single layer neural network, if $\sum_{i=0}^{n} x_{i} w_{i}>0$, then the output is -1 , otherwise 1.

You may like to use the following table, wherever required:

x	e^{x}
-0.09	0.91
-0.08	0.92
-0.75	0.47
-0.7	0.50
-0.5	0.61
-0.1	0.90
0.1	1.11
0.2	1.22
0.115	1.27
0.08	1.08

