M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

Term-End Examination

June, 2016

MMTE-006 : CRYPTOGRAPHY

Time: 2 hours
Maximum Marks : 50
Note: Question no. 1 is compulsory. Answer any four from questions no. 2 to 6.

1. Which of the following statements are true, and which are false ? Justify your answers. $5 \times 2=10$
(a) IP in DES does not contribute to security.
(b) A block cipher in CTR mode of operation can be used as a stream cipher.
(c) An affine cipher is a special case of a simple substitution cipher.
(d) The probability of success in finding the second pre-image of a hash is higher than that of finding a collision for the hash.
(e) Any finite field is isomorphic to \mathbf{Z}_{p}, for some prime p .
2. (a) Generate the first 5 terms of the Blum-Blum-Shub sequence, given $p=19$, $q=23$ and initial seed $=15$.
(b) Is $F_{2}[x] /\left(x^{4}+x^{2}+1\right)$ a field? Why, or why not?
(c) Suppose Bano chooses $\mathrm{p}=109$. Check that 6 is a primitive root modulo 109. Bano chooses the secret value $x=40$ and public key (109, 6, 7). Bano receives the pair $(96,45)$ from Asha. Find the message.
3. (a) (i) Describe the pseudo-random generation algorithm of RC4.
(ii) Starting from state S , such that $\mathrm{S}[\mathrm{i}]=255-\mathrm{i}$, run PRGA for 3 steps. 6
(b) Decrypt the following affine cipher. You are given information that the message starts with the word GOOD

NBBYR BQWXW N.
4. (a) If $f(x)=x^{4}+x^{3}+x+1$ and

$$
g(x)=x^{3}+x^{2}+x+1
$$

are polynomials in $\mathbf{Q}[x]$, use the extended Euclidean algorithm to find $p(x)$ and $q(x)$ in $\mathbf{Q}[\mathrm{x}]$ such that $\mathrm{p}(\mathrm{x}) \mathrm{f}(\mathrm{x})+\mathrm{q}(\mathrm{x}) \mathrm{g}(\mathrm{x})=\mathrm{h}(\mathrm{x})$, where $h(x)$ is the $g c d$ of $f(x)$ and $g(x)$.
(b) Explain the Birthday Paradox. Calculate the probability of two persons from a group of 5 being born on the same day of the week.
5. (a) (i) Describe the toy block cipher with a block diagram for 1 round.
(ii) Decrypt the first round toy cipher 010110110111 with the following parameters:
key = 110110111
S-box
$S_{1}=\left[\begin{array}{llllllll}101 & 010 & 001 & 110 & 011 & 100 & 111 & 000 \\ 001 & 100 & 110 & 010 & 000 & 111 & 101 & 011\end{array}\right]$
$\mathrm{S}_{2}=\left[\begin{array}{llllllll}100 & 000 & 110 & 101 & 111 & 001 & 011 & 010 \\ 101 & 011 & 000 & 111 & 110 & 010 & 001 & 100\end{array}\right]$
(b) Compute $5^{13}(\bmod 43)$ using the repeated squaring algorithm.
6. (a) Suppose Asha wants to send the message $\mathrm{h}(\mathcal{M})=25$ to Bano. She wants to sign the message using the RSA signature scheme, with parameters $\mathrm{n}=77, \mathrm{e}=13, \mathrm{~d}=37$.
(i) Find the signature of the message.
(ii) What information should Bano receive to be able to verify the signature ? Further, give the procedure for verifying Asha's signature.
(b) Find the multiplicative inverse of $x^{7}+x^{3}+1$ in $F_{2}[x] /\left\langle x^{8}+x^{4}+x^{3}+x+1\right\rangle . \quad 4$

