No. of Printed Pages : 3

MMTE-006

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

00786

June, 2016

MMTE-006 : CRYPTOGRAPHY

 Time : 2 hours
 Maximum Marks : 50

 Note : Question no. 1 is compulsory. Answer any four

from questions no. 2 to 6.

1. Which of the following statements are *true*, and which are *false*? Justify your answers. $5 \times 2=10$

- (a) IP in DES does not contribute to security.
- (b) A block cipher in CTR mode of operation can be used as a stream cipher.
- (c) An affine cipher is a special case of a simple substitution cipher.
- (d) The probability of success in finding the second pre-image of a hash is higher than that of finding a collision for the hash.
- (e) Any finite field is isomorphic to \mathbf{Z}_{p} , for some prime p.

MMTE-006

1

P.T.O.

- 2. (a) Generate the first 5 terms of the Blum-Blum-Shub sequence, given p = 19, q = 23 and initial seed = 15.
 - (b) Is $\mathbf{F}_2[\mathbf{x}] / (\mathbf{x}^4 + \mathbf{x}^2 + 1)$ a field ? Why, or why not ?

4

2

4

4

6

- (c) Suppose Bano chooses p = 109. Check that
 6 is a primitive root modulo 109. Bano chooses the secret value x = 40 and public key (109, 6, 7). Bano receives the pair (96, 45) from Asha. Find the message.
- **3.** (a) (i) Describe the pseudo-random generation algorithm of RC4.
 - (ii) Starting from state S, such that S[i] = 255-i, run PRGA for 3 steps. 6
 - (b) Decrypt the following affine cipher. You are given information that the message starts with the word GOOD

NBBYR BQWXW N.

4. (a) If $f(x) = x^4 + x^3 + x + 1$ and $g(x) = x^3 + x^2 + x + 1$

> are polynomials in Q[x], use the extended Euclidean algorithm to find p(x) and q(x) in Q[x] such that p(x) f(x) + q(x) g(x) = h(x), where h(x) is the gcd of f(x) and g(x).

MMTE-006

- (b) Explain the Birthday Paradox. Calculate the probability of two persons from a group of 5 being born on the same day of the week.
- 5. (a) (i) Describe the toy block cipher with a block diagram for 1 round.
 - (ii) Decrypt the first round toy cipher 010110110111 with the following parameters:

key = 110110111

S-box

S ₁ =	101	010	001	110	011	100	111	000]
	001	100	110	010	000	111	101	011
S ₂ =	100	000	110	101	111	001	011	010]
	101	011	000	111	110	010	001	100

- (b) Compute $5^{13} \pmod{43}$ using the repeated squaring algorithm.
- 6. (a) Suppose Asha wants to send the message $h(\mathcal{M}) = 25$ to Bano. She wants to sign the message using the RSA signature scheme, with parameters n = 77, e = 13, d = 37.
 - (i) Find the signature of the message.
 - (ii) What information should Bano receive to be able to verify the signature ? Further, give the procedure for verifying Asha's signature.
 - (b) Find the multiplicative inverse of $x^7 + x^3 + 1$ in $\mathbf{F}_2[x] / \langle x^8 + x^4 + x^3 + x + 1 \rangle$. 4

MMTE-006

3

1,200

6

4

6

4