M.Sc. (MATHEMATICS WITH APPLICATIONS
 IN COMPUTER SCIENCE)

M.Sc. (MACS)

Term-End Examination

DIESE

June, 2016

MMTE-005 : CODING THEORY

Time: 2 hours
Maximum Marks : 50
(Weightage : 50\%)
Note: Answer any five questions from questions no. 1 to 6. Use of calculator is not allowed.

1. (a) Explain what a simple communication channel is, with the help of a diagram.
(b) Define the dual code of a code. Find the dual code of a code C generated by the matrix $G=\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1\end{array}\right]$ over F_{2}. Also find the generator matrix of the dual code of C .
(c) Find the 2-cyclotomic cosets modulo 31.
2. (a) Let r be an integer with $0 \leq r \leq m$. Let $R(r, m)$ denote the $r^{\text {th }}$ order RM code of length 2^{m}. Prove that $R(m, m)^{\perp}=\{0\}$, and $R(r, m)^{\perp}=R(m-r-1, m)$ for $0 \leq r<m$.
(b) Generate a field with 16 elements with the polynomial $x^{4}+x+1$.
3. (a) Find the generating idempotent for a cyclic code C of length 7 over \mathbf{F}_{2} with generator polynomial $1+x+x^{3}$.
(b) Let C be a cyclic code in R_{n} and let $\mathrm{e}(\mathrm{x})$ be a non-zero idempotent in C. Prove that $C=\langle e(x)\rangle$ iff $e(x)$ is the unity of C.
(c) 'There is a unique self-dual code of length 7 over \mathbf{F}_{2}.' Is this statement true ? Give reasons for you answer.
4. (a) Give an example of a BCH code, with justification.
(b) Define a low density parity check code, and give an example.
(c) Find the convolutional code for the message 1011. The convolutional encoder is given below :

5. (a) Find the weight distribution and weight enumerator of the code C generated by the matrix

$$
\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right] \text { over } F_{2}
$$

(b) Let \mathbf{p} be an odd prime and let a be in \mathbf{Z}_{p} with a $\equiv \mathbf{F}(\bmod p)$. If a is a square, then prove that the multiplicative order of a is a divisor of $\frac{(\mathrm{p}-1)}{2}$.
(c) Give the criteria for the existence of duadic codes of length n over F_{2} and F_{3}. Also, find $\mathrm{n}, \mathrm{n}>10$, such that duadic codes of length n exist over $\mathrm{F}_{2}, \mathrm{~F}_{3}$. Justify your answer.
6. (a) Show that the Z_{4}-linear codes with generator matrices
$\left[\begin{array}{llll}1 & 1 & 1 & 3 \\ 0 & 2 & 0 & 2 \\ 0 & 0 & 2 & 2\end{array}\right]$ and $\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 2 & 0 & 0 & 2 \\ 0 & 2 & 0 & 2\end{array}\right]$
are monomially equivalent.
(b) Let \mathbf{C} be a self-orthogonal \mathbf{Z}_{4}-linear code with $\mathbf{c} \in \mathrm{C}$. Prove that

$$
\begin{align*}
\mathrm{wt}_{\mathrm{L}}(\mathrm{c}) & \equiv 0(\bmod 2) \\
\mathrm{wt}_{\mathrm{E}}(\mathrm{c}) & \equiv 0(\bmod 4) \tag{2}
\end{align*}
$$

(c) Let C be the [15, 7] narrow-sense binary BCH code with designed distance $\delta=5$, which has defining set

$$
T=\{1,2,3,4,6,8,9,12\}
$$

Using the primitive $15^{\text {th }}$ root of unity α, $\alpha^{4}=\alpha+1$, the generator polynomial of C is

$$
g(x)=1+x^{4}+x^{6}+x^{7}+x^{8}
$$

If $y(x)=1+x+x^{5}+x^{6}+x^{9}+x^{10}$ is received, find the transmitted code word.

