M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

Term-End Examination
June, 2016
00785

MMTE-004 : COMPUTER GRAPHICS

Time: $1 \frac{1}{2}$ hours
Maximum Marks : 25
(Weightage : 50\%)
Note: Question no. 1 is compulsory. Attempt any three questions out of questions no. 2 to 5 . Use of calculator is not allowed.

1. State whether the following statements are true or false. Justify your answers.
(a) The resolution of size 2×2 inch image having 512×512 pixels is 256 . If the size is increased to 4×4 inches, then the resolution becomes double.
(b) The reflection about the line $\mathrm{y}=\mathrm{x}$ is attained by reversing x, y coordinates.
(c) Uniform scaling and rotation form a commutative pair of operations.
(d) The perspective projection onto the view plane $\mathrm{z}=\mathrm{d}$, where the centre of the projection is the origin $(0,0,0)$ is $\left(\begin{array}{cccc}\mathrm{d} & 0 & 0 & 0 \\ 0 & \mathrm{~d} & 0 & 0 \\ 0 & 0 & \mathrm{~d} & 0 \\ 0 & 0 & 1 & 0\end{array}\right)$.
(e) If the spacing between the knot sequence of a cubic spline curve is uniformly doubled, then the shape of the resulting B -spline curve changes.
2. (a) A picture has a resolution of 1024×1280 with each of the three colours being represented by 8 -bit planes each. What is the storage requirement in megabytes for a 20 second animation of the above picture with 30 frames per second ? If the compression ratio is $5: 1$, what is the storage requirement?
(b) What is the role of a video controller ?
3. Consider a polygon with vertices $\mathrm{V}_{1}(2,4)$, $\mathrm{V}_{2}(9,4), \mathrm{V}_{3}(9,7), \mathrm{V}_{4}(8,7), \mathrm{V}_{5}(8,9), \mathrm{V}_{6}(4,9)$, $\mathrm{V}_{7}(4,7), \mathrm{V}_{8}(2,7), \mathrm{V}_{9}=\mathrm{V}_{1}$ and edges $\mathrm{E}_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}+1}$ for $i=1,2,3, \ldots, 8$. Write the initial sorted edge list for the polygon. State which edges will be active on scan lines $y=6,7,8,9,10$.
4. (a) Perform a 45° rotation of triangle $\mathrm{A}(0,0)$, $\mathrm{B}(1,1), \mathrm{C}(5,2)$ about the origin.
(b) Find a normalization transformation from the window whose lower left corner is at $(0,0)$ and upper right corner is at (4,3) onto the normalized device screen so that aspect ratios are preserved.
5. Let W be a window whose lower left hand corner is at $(-4,1)$ and upper right hand corner is at $(3,6)$. Trace Cohen-Sutherland line clipping algorithm for the following line segments :
(a) $\mathrm{A}(-5,2)$ to $\mathrm{B}(-1,7)$
(b) $\mathrm{C}(-2,3)$ to $\mathrm{D}(1,2)$
(c) $\mathrm{E}(-5,7)$ to $\mathrm{F}(-2,10)$
