M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

01396
 Term-End Examination
 June, 2016

MMTE-001 : GRAPH THEORY

Time: 2 hours
Maximum Marks : 50
(Weightage : 50\%)

> Note: Question no. 1 is compulsory. Answer any four questions out of the remaining six numbered 2 to 7. Electronic devices such as calculators are not allowed.

1. State whether the following statements are true or false. Justify your answers with appropriate arguments or illustrations.
$5 \times 2=10$
(a) If G and H are two simple graphs and ψ is an isomorphism from G onto H, then there exist two adjacent vertices u and v in G such that $\psi(u)$ and $\psi(v)$ are adjacent in \bar{H}.
(b) Every maximal trail in an even graph is closed.
(c) A graph with n vertices and $n-1$ edges is always a tree.
(d) For $k \in \mathbf{N}$, every k-regular bipartite graph has a perfect matching.
(e) K_{4} is outer planar.
2. (a) Show that there is no 4-regular bipartite graph with 15 vertices.
(b) Prove that a graph is Eulerian if and only if it has at most one non-trivial component and all its vertices are of even degree.
3. (a) Let d be a list of natural numbers, of length n , and d^{\prime} be the list obtained by eliminating the largest element Δ and subtracting 1 from its next Δ largest numbers. Prove that d is graphic if and only if d^{\prime} is graphic.
(b) Find the chromatic number of the following graph G:

Also, give a minimal colouring of the graph.
4. (a) Prove that every tree with at least two vertices has at least two leaves.
(b) State and prove the Cayley's formula for the number of trees with n vertices.
(c) Check whether the following graph is Hamiltonian :

Justify your answer.
3
5. (a) If G is a bipartite graph, then prove that the maximum size of a matching in G equals the minimum size of a vertex cover of G.
(b) Find the minimum spanning tree for the following graph using Kruskal's algorithm.

Does this graph have a unique minimal spanning tree? Justify your answer.
6. (a) If G is a 2-connected graph, then show that G^{\prime}, obtained by subdividing an edge of G , is also 2-connected.
(b) Find a non-zero, feasible flow in the network given below :

7. (a) Prove that $\chi(G) \leq \Delta(G)+1$.
(b) State and prove Euler's formula.
(c) Identify the cut vertices and cut edges of the following graph :

Also draw the sub-graphs obtained by removing
(i) the vertex v_{3},
(ii) the edge $v_{3} v_{5}$.

