No. of Printed Pages : 8

MMT-008

M.Sc. (MATHEMATICS WITH APPLICATIONS

IN COMPUTER SCIENCE) M.Sc. (MACS)

00346

Term-End Examination

June, 2016

MMT-008 : PROBABILITY AND STATISTICS

Time : 3 hours

Maximum Marks : 100 (Weightage : 50%)

- Note: Question no. 8 is compulsory. Answer any six questions from questions no. 1 to 7. Use of calculator is **not** allowed.
- 1. (a) Consider a closed queuing system with 3 stations and 2 clients. Stations are in cascade and from the last queue, clients recycle to the first one. All queues have exponential services have no queuing line, thus, when a client arrives to one of the first two stations and finds the server occupied, he proceeds immediately to the following queue.
 - (i) Find the steady state distribution, if it exists.
 - (ii) Find the average number of clients in each of the queues.
 - (iii) Find the average time spent by clients in each of the queues.

MMT-008

P.T.O.

(b) Let $\{X_n\}_{n \in N_0}$ be a Markov chain with the transition matrix

$$P = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\ 0 & \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}.$$

- (i) Find all stationary distributions.
- (ii) If the chain starts from the state i = 1, what is the expected number of steps before it returns to 1?

8

5

4

- (iii) How many times, on an average, does the chain visit 2 between two consecutive visits to 1?
- 2. (a) Let $\{Z_n\}_{n \in N_0}$ be a Branching process with state space $S = \{0, 1, 2, 3, 4, ...\} = N_0$, and the probability of each offspring is 2. Classify the states and describe all closed sets.
 - (b) Consider the orthogonal transformation of the correlated zero mean random variables x_1 and x_2 and consider

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

If $E(x_1^2) = \sigma_1^2$, $E(x_2^2) = \sigma_2^2$ and
 $E(x_1x_2) = \rho \sigma_1 \sigma_2$, determine the angle θ
such that y_1 and y_2 are uncorrelated.

MMT-008

(c) The transition graph of a Markov chain having three states, healthy, sick and dead, which provides transition probabilities for the changes in a week in the condition of a patient, is given below :

If the probability that a patient is healthy be 0.8, then

- (i) find the probability that he/she will be sick in the coming first week.
- (ii) find the probability that he/she will remain healthy in the next two weeks.

Also write the transition probability matrix. (a) State the assumptions of the Poisson process. Taxis arrive at a spot from north at a rate of 40 per hour and from south at a rate of 60 per hour in accordance with independent Poisson process. Find the probability that a person will have to wait for a taxi at the spot more than 2 minutes. How many taxis will arrive at the spot in 10 minutes on an average ?

3.

MMT-008

P.T.O.

6

(b) Joint probability distribution of two random variables X_1 and X_2 are given in the following table :

X ₂ X ₁	0	1	
-1	0.16	0.14	
0	0.04	0.26	
1	0.10	0.30	

Find

- (i) mean vector,
- (ii) variance-covariance matrix,
- (iii) correlation matrix.

4. (a) A Markov chain has the following transition matrix :

0	0 $\frac{1}{2}$	$\frac{1}{2}$	2 0
1	$\frac{3}{4}$	0	$\frac{1}{4}$
2	0	1	0

Determine the probabilities of ultimate return to the states and mean recurrence times of the states. Check whether the chain is irreducible.

MMT-008

9

(b) A random sample of size 4 from $N_2(\mu, \Sigma)$ is given below :

x ₁	2	8	6	8
x 2	12	9	9	10

Test the hypothesis $H_0: \mu' = [7, 11]$ against $H_1: \mu' \neq [7, 11]$ at 5% level of significance.

[You may like to use the values $F_{2, 4}(0.05) = 19.25$ and $F_{2, 2}(0.05) = 19.00$]

9

9

(a) Variables x_1 , x_2 and x_3 have the following variance-covariance matrix :

$$\Sigma = \begin{bmatrix} 1 & 0.63 & 0.4 \\ 0.63 & 1 & 0.35 \\ 0.4 & 0.35 & 1 \end{bmatrix}$$

Write its factor model.

(b) Suppose in a branching process, the offspring distribution is given as $p_k = {}^nC_k p^k q^{n-k}; 0$ <math>k = 0, 1, 2, ...

What will be the probability of extinction of this branching process ?

MMT-008

5.

5

P.T.O.

- (c) Suppose that families migrate to an area at a Poisson rate $\lambda = 2$ per week. The number of people in each family is independent and takes the values 1, 2, 3, 4 with respective probabilities $\frac{1}{6}$, $\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{6}$. Find the expected value and variance of the number of individuals migrating to this area during a fixed five-week period.
- 6. (a) Let $[X_1, X_2, X_3]$ be distributed as $N_3(\mu, \Sigma)$, where $\mu = \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix}$ and $\Sigma = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 2 & 2 \end{bmatrix}$.

Find

(i) the conditional densities $f(x_2/x_1, x_3)$ and $f(x_1, x_2/x_3)$, 3

8

7

- (ii) the distribution of $z = 2x_1 + x_2 x_3$.
- (b) Calculate the least square estimate b, the residual e and the residual sum of squares for a straight-line model $Y = b_0 + b_1 X + e$ fitted to the following data :

X	0	1	2	3	4
Y	1	4	3	8	9

MMT-008

- 7. (a) Let X_1 , X_2 and X_3 be random variables with means $3 \cdot 3$, $-3 \cdot 1$ and $2 \cdot 5$ respectively and the variances 9, 16 and 25 respectively. Also let $\rho_{12} = 0 \cdot 5$, $\rho_{13} = 0 \cdot 3$, $\rho_{23} = -0 \cdot 4$, where ρ_{ij} is the correlation coefficient between x_i and x_j .
 - (i) Write down the mean vector and the variance-covariance matrix of $X = [X_1 \ X_2 \ X_3]^t$.

(ii) Find the mean and variance of
$$1^{t}x$$
,
where $1 = \frac{1}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

(iii) Also, find the covariance between $1^{t}x$ and $m^{t}x$, where $m = \begin{bmatrix} 2 \\ -1 \\ -1 \end{bmatrix}, 1 = \frac{1}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. 10

(b) Let X =
$$[X_1 \ X_2 \ X_3]$$
 having the covariance
matrix $\Sigma = \begin{bmatrix} 4 & 4 & -2 \\ 4 & 9 & 1 \\ -2 & 1 & 16 \end{bmatrix}$.

Find the correlation matrix.

MMT-008

P.T.O.

- 8. State whether the following statements are *true* or *false*. Give short proof or counter-example to support your answer.
 - (a) In a Markov chain $\{X_n\}_{n \in N_0}$ with state space S, if all rows of transition matrix are equal, then all states belong to the same class.
 - (b) If (X, Y, Z) be a trivariate random variable, where X, Y and Z are independent uniform random variables over (0, 1), then $P(Z \ge XY) = \frac{3}{4}$.
 - (c) If the joint pdf of a bivariate random variable (X, Y) is

$$f_{XY}(x, y) = \frac{1}{2\sqrt{3\pi}} \exp\left[-\frac{1}{2}(x^2 - xy + y^2 + x - 2y + 1)\right] -\infty < x, y < \infty,$$

then the var(X, Y) = 1 and coefficient of correlation is $\frac{1}{2}$.

- (d) If A is a 3×3 transition probability matrix, then the sum of the entries of the matrix A^3 is 3.
- (e) A finite Markov chain has a null persistent state.

8