M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)
 M.Sc. (MACS)

TITTE Term-End Examination
June, 2016

MMT-007 : DIFFERENTIAL EQUATIONS AND NUMERICAL SOLUTIONS

Time: 2 hours
Maximum Marks : 50
(Weightage : 50\%)
Note: Question no. 1 is compulsory. Answer any four questions out of questions no. 2 to 7. Use of calculators is not allowed.

1. State whether the following statements are true or false. Justify your answers with the help of a short proof or a counter-example.
(a)

$$
\mathcal{L}^{-1}\left[\ln \left(\frac{\mathrm{~s}+\mathrm{b}}{\mathrm{~s}+\mathrm{a}}\right)\right]=\frac{1}{\mathrm{t}}\left(\mathrm{e}^{-\mathrm{at}}+\mathrm{e}^{-\mathrm{bt}}\right) .
$$

(b) Euler's method is to be used to solve the initial value problem

$$
\mathrm{y}^{\prime}=-50 \mathrm{y}, \mathrm{y}(0)=2 .
$$

The value of h that can be used so that the method produces stable results is $\mathrm{h}<0.04$.
(c) The method

$$
-\lambda u_{i-1}^{n+1}+(1+2 \lambda) u_{i}^{n+1}-\lambda u_{i+1}^{n+1}=u_{i}^{n}
$$

for the solution of the equation $v_{t}=u_{x x}$ is unconditionally stable.
(d) $\int J_{2}(x) d x=2 J_{1}(x)-\int J_{0}(x) d x+c$.
(e) The p.d.e. $\frac{\partial^{2} u}{\partial x^{2}}+2 x \frac{\partial^{2} u}{\partial x \partial y}+\left(1+y^{2}\right) \frac{\partial^{2} u}{\partial y^{2}}$ is parabolic in the region $\mathrm{x}^{2}-\mathrm{y}^{2}>1$.
2. (a) Express $f(x)=e^{6 x}$ as a Hermite series. Hence, evaluate

$$
\begin{equation*}
\int^{\infty} e^{-x^{2}+6 x} H_{n}(x) d x \tag{5}
\end{equation*}
$$

(b) Derive the five-point formula for the Poisson equation $u_{x x}+u_{y y}=G(x, y)$ with uniform mesh h. Find the truncation error and the order of the method.
3. (a) Find the series solution about $x=0$, of the differential equation

$$
\begin{equation*}
9 x(1+x) y^{\prime \prime}-6 y^{\prime}+2 y=0 \tag{5}
\end{equation*}
$$

(b) Find $y(0 \cdot 2)$ with $h=0 \cdot 2$, for the initial value problem

$$
y^{\prime}=t^{2}-y^{2}, y(0)=2
$$

using Runge-Kutta fourth order method.
(c) If H_{n} is a Hermite polynomial of degree n , then show that $H_{n}^{\prime}=4 n(n-1) H_{n-2}$.
4. (a) Using Laplace transforms, solve the initial boundary value problem

$$
\begin{aligned}
& \frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}, 0<x<\infty \\
& y(0, t)=f(t), y(x, 0)=0
\end{aligned}
$$

$y(x, t)$ is bounded as $x \rightarrow \infty$, and

$$
\begin{equation*}
\frac{\partial \mathrm{y}}{\partial \mathrm{t}}=0 \text { at } \mathrm{t}=0 \text {. } \tag{5}
\end{equation*}
$$

(b) Solve the IVP $y^{\prime}=-2 x^{2}, y(0)=1$ with $h=0.2$ on the interval $[0,0.4]$ using the predictor-corrector method.

$$
\begin{aligned}
& P: y_{k+1}=y_{k}+\frac{h}{2}\left(3 y_{k}^{\prime}-y_{k-1}^{\prime}\right) \\
& C: y_{k+1}=y_{k}+\frac{h}{2}\left(y_{k+1}^{\prime}+y_{k}^{\prime}\right)
\end{aligned}
$$

Perform two corrector iterations per step.
Use second order Taylor series method with $h=0.2$ to obtain the starting value.
5. (a) Show that the method

$$
\delta_{t}^{2} u_{j}^{n}=\frac{r^{2}}{2} \delta_{x}^{2}\left[u_{j}^{n+1}+u_{j}^{n-1}\right] ; r=\frac{k}{h}
$$

for the numerical solution of the equation $u_{t t}=u_{x x}$ is of order $O\left(k^{2}+h^{2}\right)$, where k and h are step lengths in time and space directions respectively.
(b) Solve the boundary value problem using the finite difference method with second order approximations with $h=1 / 3$:

$$
\begin{aligned}
& x^{2} y^{\prime \prime}+x y^{\prime}-y=0 \\
& y(1)=5, y(2)=7
\end{aligned}
$$

6. (a) Find $\mathcal{F}^{-1}\left[\frac{1}{\alpha^{2}+16}\right]$, where \mathcal{F}^{-1} is the inverse Fourier transform.
(b) Find the solution of the boundary value problem

$$
\begin{aligned}
& u_{\mathrm{xx}}+u_{\mathrm{yy}}=\mathrm{x}^{2}+\mathrm{y}^{2} \\
& \mathrm{u}(\mathrm{x}, \mathrm{y})=\mathrm{x}^{2}-\mathrm{y}^{2} \text { on the boundary } \\
& 0 \leq \mathrm{x} \leq 4,0 \leq \mathrm{y} \leq 4,0 \leq \mathrm{x}+\mathrm{y} \leq 4
\end{aligned}
$$

using the five-point formula. Assume $h=1$.
7. (a) The solution of the boundary value problem

$$
\begin{aligned}
& \nabla^{2} u=0,0 \leq x \leq 1,0 \leq y \leq 1 \\
& u=x+y,
\end{aligned}
$$

on the boundary is being obtained by the Galerkin method with triangular elements and $h=\frac{1}{2}$. Find the contribution of any one of the element equations in $\frac{1}{2} \leq \mathrm{x} \leq 1, \frac{1}{2} \leq \mathrm{y} \leq 1$.
(b) If $f(x)=0,-1<x<0$

$$
=x, \quad 0<x<1 .
$$

Show that
$f(x)=\frac{1}{4} P_{0}(x)+\frac{1}{2} P_{1}(x)+\frac{5}{16} P_{2}(x)-\frac{3}{32} P_{4}(x)+\ldots$
where $P_{n}(x)$ is a Legendre polynomial of degree n .

