M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)
 M.Sc. (MACS)

Term-End Examination
00316
June, 2016

MMT-005 : COMPLEX ANALYSIS

Time: $1 \frac{1}{2}$ hours
Maximum Marks : 25

Note: Question no. 1 is compulsory. Attempt any three questions from questions no. 2 to 5. Use of calculator is not allowed.

1. State giving reasons whether the following statements are true or false :
$5 \times 2=10$
(a) The domain of definition of the function

$$
f(z)=\frac{z}{z-\bar{z}}
$$

is an open connected set.
(b) If $f(z)=1-2 z$ for $|z| \leq 1$, then $f(z)$ attains its maximum value when $\mathrm{z}=-1$.
(c) If $\mathrm{f}(\mathrm{z})$ is bounded and continuous on the circle $C=\{z| | z \mid=1\}$ and $\int_{C} f(z) d z=0$, then $f(z)$ is analytic in $\{z||z|<1\}$.
(d) If the radius of convergence of the power series $\sum_{n=1}^{\infty} a_{n} z^{n}$ is r, then the radius of convergence of the power series $\sum_{n=1}^{\infty} n a_{n} z^{n}$ is $n r$.
(e) Any conformal mapping maps circles to circles and straight lines to straight lines.
2. (a) Show that the function

$$
f(z)=\sqrt{|x y|} \text {, where } z=x+i y
$$

is not differentiable at $\mathrm{z}=0$.
(b) Show that

$$
u(x, y)=x^{3}-3 x y^{2}-3 y^{2}+3 x^{2}+1
$$

is a harmonic function. Find its harmonic conjugate and the analytic function $\mathrm{f}(\mathrm{z})$ whose real part is u.
3. (a) Show that the linear fractional transformation $\mathrm{w}=\mathrm{i} \frac{1-\mathrm{z}}{1+\mathrm{z}}$ maps the disc $|\mathrm{z}| \leq 1$ onto the half plane $\mathrm{I}_{\mathrm{m}} \mathrm{w}=0$.
(b) Evaluate

$$
\int_{C} \frac{(2 z-3) \sin ^{2} z}{(z+2)(3 z-1)} d z
$$

where $C=\{\mathrm{z}:|\mathrm{z}+1|=2\}$.
2
4. (a) If $f(z)=u+i v$ is an entire function and $\mathrm{u}^{3} \leq 3 \mathrm{uv}^{2}+100$ on the whole complex plane, then show that f is a constant function.
(b) Locate the singularities of the following function and determine their type :

$$
f(z)=\frac{2 \sin z-\sin 2 z}{z^{4}}
$$

5. Evaluate

$$
\begin{equation*}
\int_{0}^{\infty} \frac{1}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x . \tag{5}
\end{equation*}
$$

