M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

Ting Term-End Examination
June, 2016

MMT-004 : REAL ANALYSIS

Time: 2 hours
Maximum Marks : 50
(Weightage : 70\%)

Note: Question no. 1 is compulsory. Attempt any four questions out of questions no. 2 to 7. Calculators are not allowed.

1. State whether the following statements are True or False. Give reasons for your answers. $5 \times 2=10$
(a) Arbitrary union of compact sets is compact.
(b) If $\mathbf{f}: \mathbf{R} \rightarrow \mathbf{R}$ is the function given by $f(x)=x^{2}+4 x+e^{x}$ and A is the interval $(0,5)$, then $f(A)$ is connected.
(c) A subset of a set X which is open with respect to one metric on X will be open with respect to every other metric on X .
(d) The function $f: \mathbf{R} \rightarrow \mathbf{R}$ given by $f(x, y)=\left(x^{2}, y^{2}-1\right)$ is invertible near $(0,0)$.
(e) The domain of the Lebesgue outer measure is the power set of the rationals.
2. (a) Find the directional derivation of the function $\mathrm{f}: \mathbf{R}^{4} \rightarrow \mathbf{R}^{3}$ defined by
$\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w})=\left(\mathrm{x}^{2} \mathrm{y}, \mathrm{xyz}, \mathrm{x}^{2}+\mathrm{y}^{2}, \mathrm{zw}^{2}\right)$
at the point $(1,2,-1,-2)$ in the direction $v=(1,0,-2,2)$.
(b) Suppose that $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}^{2}$ is given by $f(t)=\left(t, t^{2}\right)$ and $g: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ is given by $\mathrm{g}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\left(\mathrm{x}_{1}^{2}, \mathrm{x}_{1} \mathrm{x}_{2}, \mathrm{x}_{2}^{2}-\mathrm{x}_{1}^{2}\right)$. Compute the derivative of g of.
(c) Find the outer measure of the following sets. Also state the results used in computing the outer measures.
(i) $\mathrm{A}:\left\{\mathrm{x}^{2}-1: 1 \leq \mathrm{x} \leq 2\right\} \cup[4,5]$
(ii) $\mathrm{S}=\left\{\frac{1}{2^{\mathrm{n}}}: \mathrm{n} \in \mathbf{N}\right\}$
3. (a) Show that the projection map $\mathbf{p}: \mathbf{R}^{2} \rightarrow \mathbf{R}$ given by $p(x, y)=y$ is uniformly continuous.
(b) Suppose that E is an open subset of \mathbf{R}^{n}. When is a map $f: E \rightarrow \mathbf{R}^{m}$ said to be differentiable on E ?
If $f: E \subset \mathbf{R}^{\mathrm{n}} \rightarrow \mathbf{R}^{\mathrm{m}}$ is a function such that the partial derivatives of f exist and are continuous on E, then show that f is differentiable on E .
(c) Is the continuous image of a Cauchy sequence a Cauchy sequence? Justify.
4. (a) Obtain the Taylor's series expansion up to $2^{\text {nd }}$ derivative for the function given by

$$
\begin{equation*}
f\left(x_{1}, x_{2}\right)=\sin \left(x_{1}+x_{2}\right) \text { at }\left(0, \frac{\pi}{2}\right) \tag{4}
\end{equation*}
$$

(b) Define the Lebesgue integral of a non-negative measurable function over a measurable set. If E is a measurable set and f is a measurable function such that

$$
\mathrm{a} \leq \mathrm{f}(\mathrm{x}) \leq \mathrm{b} \quad \forall \mathrm{x} \in \mathrm{E} \text {, show that }
$$

$$
a \cdot m(E) \leq \int_{E} f(x) d m \leq m(E) \cdot b .
$$

(c) Find $B\left[2, \frac{1}{2}\right]$ in (R, d), where d is the metric given by $d(x, y)=\min \{1,|x-y|\}$.
5. (a) (i) Give an example of a family \mathcal{F} of subsets of a set X which has finite intersection property. Justify your choice of example.
(ii) If every collection of closed subsets of a metric space X with finite intersection property has non-empty intersection, then show that X is compact.
(b) State the inverse function theorem. Prove that the function $\mathrm{f}: \mathbf{R}^{\mathbf{4}} \rightarrow \mathbf{R}^{4}$ given by $f(x, y, z, w)=\left(x, x-y, y^{2} z, z w\right)$ is locally invertible at the point $(1,1,1,0)$.
(c) Check whether the collection

$$
\mathbf{U}=\left\{\mathbf{B}\left(\mathbf{n}, \frac{1}{2}\right) ; \mathbf{n} \in \mathbf{Z}\right\}
$$

forms an open cover of \mathbf{R}.
6. (a) Suppose f is integrable on $[-\pi, \pi]$ and is Lipschitz continuous at $\theta \in[-\pi, \pi]$. Show that the Fourier series of f converges to f at θ.
(b) Let (X, d) be a metric space and A be a subset of X. Show that $\operatorname{bdy}(A)=\phi$ if and only if A is both open and closed.
(c) Find the Fourier sine series expansion of the function

$$
f(t)= \begin{cases}\frac{1}{2}, & 0<t<\frac{1}{2} \tag{4}\\ 0, & \frac{1}{2} \leq t<1\end{cases}
$$

7. (a) Verify Fatou's lemma for the sequence $\left\{f_{n}\right\}$ given by

$$
\begin{aligned}
f_{n}(x) & =2 n, \quad \text { for } x \in\left(\frac{1}{2 n}, \frac{1}{n}\right) \\
& =0, \quad \text { for } x \in\left(0, \frac{1}{2 n}\right) \cup\left(\frac{1}{n}, 1\right)
\end{aligned}
$$

(b) Prove that the set of irrationals is not a connected set, considered as a subset of \mathbf{R} with the usual metric.
(c) Define a stable system. Check whether the system $R: S \rightarrow S$ given by

$$
g(t)=(R f)(t)=\int_{-\infty}^{t} f(\tau) e^{-(t-\tau)} d \tau
$$

is stable or not, where S denotes the set of signals.

