No. of Printed Pages : 3

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS) ICAS Term-End Examination June. 2016

MMT-003 : ALGEBRA

Time : 2 hours

Maximum Marks : 50

(Weightage : 70%)

- Note: Question no. 1 is compulsory. Answer any four questions from questions no. 2 to 6. The use calculators is not allowed.
- 1. Which of the following statements are *True*, and which are *False*? Give reasons for your answers. 10
 - (a) There is a finite field of order 45.
 - (b) A group G of order 9 has a representation of order 2.
 - (c) Every free abelian group is a free group.
 - (d) Every set is a semi-group.
 - (e) If G is an infinite group acting on an infinite set X, then no element of X has finite stabiliser.

MMT-003

P.T.O.

2. (a) Show that for any group G,

$$\mathbf{Z}(\mathbf{G}) = \bigcap_{\mathbf{x} \in \mathbf{G}} \mathbf{Z}(\mathbf{x})$$

- (b) Find the degree of $\mathbf{Q}(\sqrt{5}, \sqrt{7})$ over \mathbf{Q} . Give reasons for each step.
- (c) Give an example, with justification, of a phase structure grammar with alphabet Z_5 , and for which the set of grammar symbols is the underlying set of the centre of A_4 .
- (a) Prove that a group of order 28 has a normal subgroup of order 7.
 - (b) Prove that S_n is not simple, for all n > 1. 2
 - (c) Simultaneously solve : x ≡ 2 (mod 5) x ≡ 3 (mod 7) x ≡ 4 (mod 11)
- 4. Compute the character table of D_5 . 10
- 5. (a) Prove that SO_2 is a subgroup of SU_2 . Further, show that the subgroup of diagonal matrices in SU_2 is conjugate to SO_2 .

MMT-003

2

4

3

5

3

4

3

(b) Let $K = Q(\sqrt{-5}, \sqrt{-2})$ with Galois group {1, ρ , σ , $\rho\sigma$ }, where ρ and σ are the Q-automorphisms of K defined by

$$\rho(\sqrt{-5}) = -\sqrt{-5}, \ \rho(\sqrt{-2}) = -\sqrt{-2}$$

$$\sigma(\sqrt{-5}) = -\sqrt{-5}, \ \sigma(\sqrt{-2}) = \sqrt{-2}.$$

Find the fixed fields of the subgroups $< \rho >$ and $< \sigma >$.

- (c) Give an example, with justification, of a semi-group which is not a group.
- 6. (a) Show that $SP_2(\mathbf{R})$ acts transitively on $\mathbf{R}^2 \setminus \{(0, 0)\}.$
 - (b) Find the elementary divisors, and the invariant factors, of the group

$$\mathbf{Z}_{6} \times \mathbf{Z}_{22} \times \mathbf{Z}_{15} \times \mathbf{Z}_{121}.$$

(c) Let $A = \begin{bmatrix} 9 & -7 \\ 13 & -10 \end{bmatrix}$ and $G = \langle A \rangle$. Find a G-invariant form on C^2 .

MMT-003

3

4

2

4

3

3