M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

$\square 196$
Term-End Examination June, 2016

MMT-003 : ALGEBRA

Time : 2 hours
Maximum Marks : 50
(Weightage : 70\%)
Note: Question no. 1 is compulsory. Answer any four questions from questions no. 2 to 6. The use calculators is not allowed.

1. Which of the following statements are True, and which are False? Give reasons for your answers. 10
(a) There is a finite field of order 45.
(b) A group G of order 9 has a representation of order 2.
(c) Every free abelian group is a free group.
(d) Every set is a semi-group.
(e) If G is an infinite group acting on an infinite set X, then no element of X has finite stabiliser.
2. (a) Show that for any group G,

$$
\begin{equation*}
Z(G)=\bigcap_{x \in G} Z(x) . \tag{3}
\end{equation*}
$$

(b) Find the degree of $\mathbf{Q}(\sqrt{5}, \sqrt{7})$ over \mathbf{Q}. Give reasons for each step. . 4
(c) Give an example, with justification, of a phase structure grammar with alphabet \mathbf{Z}_{5}, and for which the set of grammar symbols is the underlying set of the centre of A_{4}.
3. (a) Prove that a group of order 28 has a normal subgroup of order 7.
(b) Prove that S_{n} is not simple, for all $\mathrm{n}>1.2$
(c) Simultaneously solve :

5

$$
\begin{aligned}
& x \equiv 2(\bmod 5) \\
& x \equiv 3(\bmod 7) \\
& x \equiv 4(\bmod 11)
\end{aligned}
$$

4. Compute the character table of D_{5}. 10
5. (a) Prove that SO_{2} is a subgroup of SU_{2}. Further, show that the subgroup of diagonal matrices in SU_{2} is conjugate to SO_{2}.
(b) Let $\mathrm{K}=\mathbf{Q}(\sqrt{-5}, \sqrt{-2})$ with Galois group $\{1, \rho, \sigma, \rho \sigma\}$, where ρ and σ are the Q-automorphisms of K defined by

$$
\begin{aligned}
& \rho(\sqrt{-5})=-\sqrt{-5}, \rho(\sqrt{-2})=-\sqrt{-2} \\
& \sigma(\sqrt{-5})=-\sqrt{-5}, \sigma(\sqrt{-2})=\sqrt{-2} .
\end{aligned}
$$

Find the fixed fields of the subgroups $\langle\rho\rangle$ and $\langle\sigma\rangle$.
(c) Give an example, with justification, of a semi-group which is not a group.
6. (a) Show that $\mathrm{SP}_{2}(\mathbf{R})$ acts transitively on $\mathbf{R}^{2} \backslash\{(0,0)\}$.
(b) Find the elementary divisors, and the invariant factors, of the group

$$
\mathbf{Z}_{6} \times \mathbf{Z}_{22} \times \mathbf{Z}_{15} \times \mathbf{Z}_{121}
$$

(c) Let $A=\left[\begin{array}{cc}9 & -7 \\ 13 & -10\end{array}\right]$ and $G=\langle A\rangle$. Find a G-invariant form on $\mathbf{C}^{\mathbf{2}}$.

