No. of Printed Pages : 3

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

00041

June, 2016

MMT-002 : LINEAR ALGEBRA

Time : $1\frac{1}{2}$ hours

Maximum Marks : 25 (Weightage : 70%)

MMT-002

Note: Question no. 5 is compulsory. Answer any three questions from questions no. 1 to 4. Use of calculators is **not** allowed.

1. (a) Let T be the linear operator from \mathbb{R}^3 to itself whose matrix with respect to the $\left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right)$

ordered basis
$$\mathbf{B} = \left\{ \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{1} \\ \mathbf{1} \end{bmatrix}, \begin{bmatrix} \mathbf{1} \\ \mathbf{1} \end{bmatrix} \right\}$$
 is

 $\begin{bmatrix} 2 & 0 & 1 \\ 0 & 5 & 1 \\ \end{bmatrix}$. Find the matrix of T with

1

MMT-002

P.T.O.

3

(b) Check that the matrix $A = \begin{bmatrix} 1 & 2 \\ & & \\ 2 & 1 \end{bmatrix}$ is positive definite. Find the square root of A. 2

2.

(a)

Write the Jordan canonical form for the matrix

2

5

5

3	0	1]	
0	3	1	
0	0	3]	

(b) Find a least square solution for the system 3x + y = 4, x - y = 1, 2x + 2y = 1, 2x + y = 3. 3

3. Solve the system
$$\frac{dy(t)}{dt} = Ay(t)$$
, with

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 1 \\ 1 & -1 & 1 \end{bmatrix} \text{ and } y(0) = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.$$

4. Write the singular value decomposition for the matrix $\begin{bmatrix} -1 & 1 \\ 0 & 1 \\ -1 & 0 \end{bmatrix}$.

MMT-002

2

- 5. Which of the following statements are *true* and which are *false*? Justify your answers. $5 \times 2=10$
 - (a) If A is a $n \times n$ diagonalisable matrix, then A has n distinct eigenvalues.
 - (b) Similar matrices have the same minimal polynomial.
 - (c) A unitary matrix is diagonalisable.
 - (d) All eigenvalues of a positive definite matrix are positive.
 - (e) If D is a diagonalisable $n \times n$ matrix and N is a nilpotent $n \times n$ matrix, then ND = DN.