No．of Printed Pages ： 3
MMT－002

M．Sc．（MATHEMATICS WITH APPLICATIONS
 IN COMPUTER SCIENCE）
 M．Sc．（MACS）

Term－End Examination
ロロロ41
June， 2016
MMT－002 ：LINEAR ALGEBRA
Time ： $1 \frac{1}{2}$ hours
Maximum Marks ： 25
（Weightage ：70\％）
Note：Question no． 5 is compulsory．Answer any three questions from questions no． 1 to 4．Use of calculators is not allowed．

1．（a）Let T be the linear operator from \mathbf{R}^{3} to itself whose matrix with respect to the ordered basis $B=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$ is $\left[\begin{array}{lll}2 & 0 & 1 \\ 0 & 5 & 1 \\ 0 & 0 & 1\end{array}\right]$. Find the matrix of T with
respect to the ordered basis $B^{\prime}=\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$.
(b) Check that the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ is positive definite. Find the square root of A .
2. (a) Write the Jordan canonical form for the matrix

$$
\left[\begin{array}{lll}
3 & 0 & 1 \\
0 & 3 & 1 \\
0 & 0 & 3
\end{array}\right]
$$

(b) Find a least square solution for the system

$$
\begin{equation*}
3 x+y=4, x-y=1,2 x+2 y=1,2 x+y=3 \tag{3}
\end{equation*}
$$

3. Solve the system $\frac{d y(t)}{d t}=A y(t)$, with

$$
A=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 3 & 1 \\
1 & -1 & 1
\end{array}\right] \text { and } y(0)=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

4. Write the singular value decomposition for the

$$
\operatorname{matrix}\left[\begin{array}{rr}
-1 & 1 \\
0 & 1 \\
-1 & 0
\end{array}\right]
$$

5. Which of the following statements are true and which are false? Justify your answers.
(a) If A is a $\mathrm{n} \times \mathrm{n}$ diagonalisable matrix, then A has n distinct eigenvalues.
(b) Similar matrices have the same minimal polynomial.
(c) A unitary matrix is diagonalisable.
(d) All eigenvalues of a positive definite matrix are positive.
(e) If D is a diagonalisable $\mathrm{n} \times \mathrm{n}$ matrix and N is a nilpotent $\mathrm{n} \times \mathrm{n}$ matrix, then $\mathrm{ND}=\mathrm{DN}$.
