M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Practical Examination
June, 2016

MMT-007 (P) : DIFFERENTIAL EQUATIONS AND NUMERICAL SOLUTIONS

Tinte: $11 / 2$ hours
Maximum Marks : 40
Note: There are two questions in this paper totalling 30 marks. Answer both of them. Remaining 10 marks are for the viva-voce.

1. Write a program in ' C^{\prime} language to solve the initial value problem
$y^{\prime}=x^{2}+y^{3}, y(1)=0$
in the internal $[1,2]$ using the Predictor Corrector method :

$$
\begin{aligned}
& P: y_{n+1}=y_{n}+\frac{h}{24}\left[55 y_{n}^{\prime}-59 y_{n-1}^{\prime}+37 y_{n-2}^{\prime}-9 y_{n-3}^{\prime}\right] \\
& C: y_{n+1}=y_{n}+\frac{h}{24}\left[9 y_{n+1}^{\prime}+19 y_{n}^{\prime}-5 y_{n-1}^{\prime}+y_{n-2}^{\prime}\right]
\end{aligned}
$$

with $\mathrm{h}=0.2$. Calculate the starting value using the Euler's method with the same step length. Perform two corrector iterations per step.
2. Write a program in ' C ' language to solve the equation

$$
\begin{aligned}
& \frac{\partial^{2} \mathbf{u}}{\partial t^{2}}=\frac{\partial^{2} \mathbf{u}}{\partial x^{2}}, 0 \leq x \leq 4,0 \leq \mathrm{t} \leq 4 \text { with } \\
& \mathbf{u}(0, \mathrm{t})=0, \mathbf{u}(4, \mathrm{t})=0, \mathrm{u}(x, 0)=0 \\
& \frac{\partial \mathrm{u}}{\partial \mathrm{t}}(x, 0)=\frac{x}{10}(4-x)
\end{aligned}
$$

Using the scheme

$$
\mathbf{u}_{i}^{\mathrm{n}+1}=2 \mathbf{u}_{i}^{\mathrm{n}}-\mathbf{u}_{i}^{\mathrm{n}-1}+\mathrm{r}^{2}\left[\mathbf{u}_{i+1}^{\mathrm{n}}-2 \mathrm{u}_{i}^{\mathrm{n}}+\mathrm{u}_{i-1}^{\mathrm{n}}\right] .
$$

Use the central difference approximation to the derivative to obtain initial condition. Assume $h=\frac{1}{4}$ and $r=\frac{1}{3}$ and integrate for one time step.

