BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination
 $\square 12 \square E$
 June, 2016

ELECTIVE COURSE : MATHEMATICS MTE-02 : LINEAR ALGEBRA

Time: 2 hours
Maximum Marks : 50
(Weightage 70\%)
Note: Question no. 7 is compulsory. Attempt any four questions from Questions no. 1 to 6. Use of calculators is not allowed.

1. (a) Let $\alpha_{1}=(1,0,-1), \alpha_{2}=(1,2,1)$ and $\alpha_{3}=(0,-3,2)$ be vectors in \mathbf{R}^{3}. Show that $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ is a basis for \mathbf{R}^{3}. Express ($1,0,0$) and ($1,1,0$) as linear combinations of α_{1}, α_{2} and α_{3}.
(b) Let $\mathrm{T}: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be defined by

$$
\begin{aligned}
\mathrm{T}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\left(3 \mathrm{x}_{1}+\mathrm{x}_{3},-2\right. & \mathrm{x}_{1}+ \\
& \mathrm{x}_{2}, \\
& \left.\mathrm{x}_{1}+2 \mathrm{x}_{2}+4 \mathrm{x}_{3}\right)
\end{aligned}
$$

(i) Write the matrix of T with respect to the standard basis of \mathbf{R}^{3}.
(ii) Show that $\mathrm{T}^{\mathbf{- 1}}$ exists. Give the expression for $T^{-1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$ for T above.
2. (a) Let $\mathrm{f}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{1}$ be defined by
$\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=3 \mathrm{x}_{1}+4 \mathrm{x}_{2}$ and $\mathrm{T}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be
defined by $T\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2}, x_{1}+x_{2}\right)$.
Suppose $g=f$ o T. What is $g(2,3)$?
(b) Let $A=\left[\begin{array}{lll}a & 2 & 1 \\ 0 & b & 1 \\ 1 & 1 & 1\end{array}\right]$.
(i) Find one value each of a and b such that rank of A is 3 . Justify your answer.
(ii) Find one value each for a and b such that rank of A is 2 . Justify your answer.
(c) Find the minimal polynomial of the matrix

$$
\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

3. (a) Find the eigenvalues and eigenvectors of the matrix

$$
A=\left(\begin{array}{ccc}
5 & -6 & -6 \tag{5}\\
-1 & 4 & 2 \\
3 & -6 & -4
\end{array}\right)
$$

(b) Solve the following system of equations by Gauss elimination method :

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =4 \\
x_{1}-x_{2}-x_{3} & =2 \\
x_{1}-2 x_{2} & =0
\end{aligned}
$$

4. (a) Show that $A^{-1}=A^{3}$, if A is the matrix $\left(\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right)$
(b) Let $\beta_{1}=(1,0,1), \beta_{2}=(1,0,-1)$ and $\beta_{3}=(0,3,4)$ be vectors in \mathbf{R}^{3}. Apply the Gram-Schmidt process to $\left\{\beta_{1}, \beta_{2}, \beta_{3}\right\}$ to obtain an orthonormal basis for \mathbf{R}^{3}.
5. (a) Suppose in the standard basis for \mathbf{R}^{3}, the matrix of $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ is $\left(\begin{array}{ccc}1 & 1 & 2 \\ -1 & 2 & 1 \\ 0 & 1 & 3\end{array}\right)$.
Find the matrix of T with respect to the ordered basis $\left\{\mathrm{V}_{1}=(1,1,1), \mathrm{V}_{2}=(0,1,1)\right.$, $\left.\mathrm{V}_{3}=(0,0,1)\right\}$.
(b) Find the orthogonal canonical reduction of the form $x^{2}-2 y^{2}+z^{2}+2 x y+6 y z$ and its principal axis.
6. (a) Find the range space and a basis for the kernel of the linear transformation $\mathrm{T}: \mathbf{R}^{\mathbf{4}} \rightarrow \mathbf{R}^{4}$ defined by

$$
T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}-x_{2}, x_{2}-x_{3}, x_{3}-x_{4}, x_{4}-x_{1}\right) .
$$

(b) Are there values of $\mathrm{a} \in \mathbf{C}$ for which the $\operatorname{matrix}\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & a\end{array}\right]$ is unitary ? Justify your answer.
7. Which of the following statements are true and which are false? Justify your answer. $\quad 5 \times 2$
(a) If $\mathrm{V}=\{\mathrm{A} \mid \mathrm{A}$ is a 2×2 real matrix $\}$, then $\mathrm{V}_{1}=\{\mathrm{A} \in \mathrm{V} \mid \mathrm{A}$ is invertible $\}$ is a subspace of V.
(b) The function defined by $\mathrm{x} * \mathrm{y}=\log (\mathrm{xy})$ is a binary operation on S, where $S=\{x \in R \mid x>0\}$.
(c) The kernel of the matrix $\left(\begin{array}{ccc}1 & 2 & 1 \\ 0 & 1 & 1 \\ -1 & 3 & 4\end{array}\right)$ is
zero.
(d) If the determinant of a matrix is zero, the matrix is not diagonalisable.
(e) There is no co-ordinate transformation that transforms the quadratic form $x^{2}+y^{2}+z^{2}$ to $\mathrm{xz}+\mathrm{yz}$.

स्नातक उपाधि कार्यक्रम (बी.डी.पी.)
सत्रांत परीक्षा
जून, 2016

ऐच्छिक पाठ्यक्रम : गणित एम.टी.ई.-02 : रैखिक बीजगणित

समय : 2 घण्टे अधिकतम अंक: 50 (कुल का 70\%)
नोट: प्रश्न सं. 7 करना ज़रूरी है। प्रश्न सं. 1 से 6 में से किन्हीं चार प्रश्नों के उत्तर दीजिए / कैल्कुलेटरों के प्रयोग करने की अनुमति नहीं है ।

1. (क) मान लीजिए $\alpha_{1}=(1,0,-1), \alpha_{2}=(1,2,1)$ और $\alpha_{3}=(0,-3,2), \mathrm{R}^{3}$ में सदिश हैं । दिखाइए कि $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\} \mathbf{R}^{3}$ का आधार है। α_{1}, α_{2} और α_{3} के एकघात संचय में $(1,0,0)$ और $(1,1,0)$ को व्यक्त कीजिए।
(ख) मान लीजिए T: $\mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$,

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(3 x_{1}+x_{3},-2 x_{1}+x_{2},-x_{1}+2 x_{2}+4 x_{3}\right)
$$

द्वारा परिभाषित है ।
(i) \mathbf{R}^{3} के मानक आधार के सापेक्ष T का आव्यूह लिखिए।
(ii) दिखाइए कि T^{-1} का अस्तित्व है । ऊपर (i) में दिए गए T के लिए $T^{-1}\left(x_{1}, x_{2}, x_{3}\right)$ का व्यंजक दीजिए।
2. (क) मान लीजिए $\mathrm{f}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{1}, \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=3 \mathrm{x}_{1}+4 \mathrm{x}_{2}$ द्वारा परिभाषित है और $\mathbf{T}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$, $T\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\left(\mathrm{x}_{1}-\mathrm{x}_{2}, \mathrm{x}_{1}+\mathrm{x}_{2}\right)$ द्वारा परिभाषित है । मान लीजिए $\mathrm{g}=\mathrm{foT}$. तब $\mathrm{g}(2,3)$ क्या है ?
(ख) मान लीजिए $\mathrm{A}=\left[\begin{array}{lll}\mathrm{a} & 2 & 1 \\ 0 & \mathrm{~b} & 1 \\ 1 & 1 & 1\end{array}\right]$.
(i) a और b के लिए एक-एक मान ज्ञात कीजिए जिनके लिए A की जाति 3 हो । अपने उत्तर की पुष्टि कीजिए।
(ii) a और b के लिए एक-एक मान ज्ञात कीजिए जिनके लिए A की जाति 2 हो । अपने उत्तर की पुष्टि कीजिए।
(ग) आव्यूह $\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$ का अल्पिष्ठ बहुपद ज्ञात कीजिए ।
3. (क) आव्यूह $\mathrm{A}=\left(\begin{array}{ccc}5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4\end{array}\right)$ के आइगेनमान और आइगेनसदिश ज्ञात कीजिए।
(ख) निम्नलिखित समीकरण निकाय :

$$
\begin{array}{r}
x_{1}+x_{2}+x_{3}=4 \\
x_{1}-x_{2}-x_{3}=2 \\
x_{1}-2 x_{2}=0
\end{array}
$$

को गाउसीय निराकरण विधि से हल कीजिए।
4. (क) यदि A आव्यूह $\left(\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right)$ है, तब दिखाइए कि $A^{-1}=A^{3}$.
(ख) मान लीजिए $\beta_{1}=(1,0,1), \beta_{2}=(1,0,-1)$ और $\beta_{3}=(0,3,4) \mathbf{R}^{3}$ में सदिश हैं । $\left\{\beta_{1}, \beta_{2}, \beta_{3}\right\}$ पर ग्राम-श्मिट प्रक्रम लागू करके \mathbf{R}^{3} का एक प्रसामान्य लांबिक आधार प्राप्त कीजिए।
5. (क) मान लीजिए \mathbf{R}^{3} के लिए मानक आधार के सापेक्ष
$T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ का आव्यूह $\left(\begin{array}{ccc}1 & 1 & 2 \\ -1 & 2 & 1 \\ 0 & 1 & 3\end{array}\right)$ है ।
क्रमित आधार $\left\{\mathrm{V}_{1}=(1,1,1), \mathrm{V}_{2}=(0,1,1)\right.$, $\left.\mathrm{V}_{3}=(0,0,1)\right\}$ के सापेक्ष T का आव्यूह ज्ञात कीजिए।
(ख) समघात $\mathrm{x}^{2}-2 \mathrm{y}^{2}+\mathrm{z}^{2}+2 \mathrm{xy}+6 \mathrm{yz}$ का लांबिक विहित समानयन और उसका मुख्य अक्ष ज्ञात कीजिए। 6
6. (क) $T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}-x_{2}, x_{2}-x_{3}, x_{3}-x_{4}, x_{4}-x_{1}\right)$

द्वारा परिभाषित रैखिक रूपांतरण $\mathbf{T}: \mathbf{R}^{4} \rightarrow \mathbf{R}^{4}$ की अष्टि का आधार और परिसर समष्टि ज्ञात कीजिए।
(ख) क्या ऐसे $a \in \mathbf{C}$ के मान होते हैं जिनके लिए आव्यूह

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
0 & \frac{1}{\sqrt{2}} & \mathrm{a}
\end{array}\right] \text { ऐकिक है । अपने उत्तर की पुष्टि }} \\
& \text { कीजिए । }
\end{aligned}
$$

7. निम्नलिखित में से कौन-से कथन सत्य हैं और कौन-से असत्य ? अपने उत्तर की पुष्टि कीजिए। $5 \times 2=10$
(क) यदि $\mathrm{V}=\{\mathrm{A} \mid \mathrm{A}$ एक 2×2 वास्तविक आव्यूह $\}$ हो, तब $\mathrm{V}_{1}=\{\mathrm{A} \in \mathrm{V} \mid \mathrm{A}$ व्युत्क्रमणीय है V की उपसमष्टि है।
(ख) $\mathrm{x} * \mathrm{y}=\log (\mathrm{xy})$ द्वारा परिभाषित फलन S पर द्विआधारी संक्रिया है, जहाँ $S=\{x \in \mathbf{R} \mid x>0\}$.
(ग) आव्यूह $\left(\begin{array}{ccc}1 & 2 & 1 \\ 0 & 1 & 1 \\ -1 & 3 & 4\end{array}\right)$ की अष्टि शून्य है ।
(घ) यदि एक आव्यूह का सारणिक शून्य है, तब आव्यूह विकर्णनीय नहीं है।
(ङ) ऐसा कोई निर्देशांक रूपांतरण नहीं है जो द्विघाती समघात $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$ को $\mathrm{xz}+\mathrm{yz}$ में रूपांतरित करता है ।
