BACHELOR OF SCIENCE (B.Sc.)
 Term-End Examination
 June, 2016

$\square 1217$

CHEMISTRY

CHE-04 : PHYSICAL CHEMISTRY

Time: 2 hours
Maximum Marks : 50
Note: Attempt all the parts. Answer five questions from each of the parts A, B, C and D.

PART A

Answer any five questions.
$5 \times 1=5$

1. What is the S.I. unit of temperature ? 1
2. State Graham's law of effusion of gases. 1
3. Name the crystal system whose unit cell has the following characteristics :

$$
a \neq b \neq c \text { and } \alpha=\gamma=90^{\circ}, \beta \neq 90^{\circ}
$$

CHE-04 1
P.T.O.
4. Identify the type of thermodynamic system in each of the following cases :
(i) A sealed bottle of flavoured milk
(ii) Ice in a closed thermos flask
5. Write the equation for the phase rule.
6. Explain why an aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ is acidic in nature.
7. Write the expression for the instantaneous rate of the following reaction in terms of changes in concentrations of O_{3} or O_{2} :

$$
2 \mathrm{O}_{3}(\mathrm{~g}) \rightarrow 3 \mathrm{O}_{2}(\mathrm{~g})
$$

PART B

Answer any five questions.

8. Which among the following is expected to have
the highest surface tension at room
temperature : water, methyl cyanide or
methanol? State the reason also. 2
9. Differentiate between intrinsic and extrinsic semiconductors in terms of the origin of conductivity in them. 2
10. Identify the intensive and extensive variables from among the following : 2(i) Temperature of a body(ii) Number of moles present in a substance(iii) Quantity of cooking gas burnt for boilingmilk
(iv) Specific heat
11. Give one example each of chemical reactions undergoing homogeneous catalysis and heterogeneous catalysis. 2
12. State the principle of corresponding states. 2
13. Addition of $\mathrm{NH}_{4} \mathrm{Cl}$ to an aqueous solution of $\mathrm{NH}_{4} \mathrm{OH}$ results in a decrease of pH . Explain. 214. Explain the effect of (i) increase in pressure and(ii) increase in temperature on the followingreaction:2

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}), \Delta_{\mathrm{r}} \mathrm{H}^{\circ}=-92 \cdot 2 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

CHE-043P.T.O.

PART C

Answer any five questions.

$$
5 \times 3=15
$$

15. Derive Van der Waals equation from the ideal gas equation. 3
16. Draw a labelled phase diagram of $\mathrm{Bi}-\mathrm{Cd}$ system. 3
17. Derive an expression for Van't Hoff factor for a solute undergoing association. 318. Differentiate between 'Bond DissociationEnergy' and 'Bond Enthalpy' with the help of oneexample each.3
18. Starting from the definition of Helmholtz free energy (A) derive relations for its variation with
(i) temperature at a constant volume, and
(ii) volume at a constant temperature.
19. What is an ideal solution ? When $100 \mathrm{~cm}^{3}$ of liquid A and $250 \mathrm{~cm}^{3}$ of liquid B were mixed, the volume of the solution formed was $353 \mathrm{~cm}^{3}$. What type of solution is it, ideal or non-ideal ? Give another example of such solutions.
20. (a) Differentiate between 'activated complex' and 'transition state'.
(b) What is transmission coefficient?

PART D

Answer any five questions.
$5 \times 4=20$
22. Calculate ΔG° for the reaction occurring in the following cell :

4

$$
\mathrm{Al}(\mathrm{~s})\left|\mathrm{Al}^{3+}(1 \mathrm{M}) \| \mathrm{Cu}^{2+}(1 \mathrm{M})\right| \mathrm{Cu}(\mathrm{~s})
$$

Standard electrode potentials :

$$
{\underset{\mathrm{Al}}{ }{ }^{3+/ \mathrm{Al}}}_{0}^{0}=-1.66 \mathrm{~V} \text { and } E_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{0}=+0.34 \mathrm{~V}
$$

23. State the two laws of photochemistry. Define quantum efficiency for the formation of a product. Why do some reactions show very high quantum efficiency?
24. Two electrolytic cells were connected in series. In one (i) an AgNO_{3} solution and in the other (ii) $500 \mathrm{~cm}^{3}$ of a solution in which 10.0 g of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is dissolved are present. After passing electric current for 30 minutes, it was found that 1.307 g silver has been deposited. Calculate the concentration of copper expressed in gram per litre $\left(\mathrm{gL}^{-1}\right)$ in the copper sulphate solution after the electrolysis.
[Atomic masses are : $\mathrm{Cu}=63.54 ; \mathrm{Ag}=108$]
25. Explain the following phenomena and give their cause :
(a) Brownian motion
(b) Tyndall effect
26. Explain the principle of steam distillation. When a liquid which is immiscible with water was steam distilled at $95.6^{\circ} \mathrm{C}$ under a total pressure of $7.5 \times 10^{4} \mathrm{~Pa}$, the distillate contained 1.20 g of the liquid per gram of water. Calculate the molar mass of the liquid. Vapour pressure of water is $6.5 \times 10^{4} \mathrm{~Pa}$ at $95.6^{\circ} \mathrm{C}$.
27. 2.0 g of benzoic acid dissolved in 25.0 g of benzene shows a depression in freezing point equal to 1.62 K . What is the percentage association of benzoic acid ? K_{f} for benzene is $4.9 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$.
28. Give the two statements of the second law of thermodynamics given by (i) Clausius and (ii) Kelvin. What is the entropy change of 3.5 mol of an ideal gas during its isothermal and reversible expansion from $2.5 \times 10^{-3} \mathrm{~m}^{3}$ to $0.25 \mathrm{~m}^{3}$?

विज्ञान स्नातक (बी.एस सी.)
सत्रांत परीक्षा
जून, 2016

रसायन विज्ञान
 सी.एच.ई.-04 : भौतिक रसायन

समय : 2 घण्टे
अधिकतम अंक : 50
नोट : सभी भागों के उत्तर दीजिए / क, ख, ग और घ प्रत्येक भाग में से पाँच-पाँच प्रश्नों के उत्तर दीजिए ।

भाग क

किन्हीं पाँच प्रश्नों के उत्तर दीजिए ।
$5 \times 1=5$

1. तापमान का S.I. मात्रक क्या होता है ? 1
2. ग्रैहम का गैसों का निःसरण का नियम लिखिए।
3. ऐसे क्रिस्टल समुदाय का नाम बताइए जिसके एकक सेल के निम्नलिखित गुणधर्म हैं :

$$
\mathrm{a} \neq \mathrm{b} \neq \mathrm{c} \text { और } \alpha=\gamma=90^{\circ}, \beta \neq 90^{\circ}
$$

4. निम्नलिखित स्थितियों के प्रत्येक के ऊष्मागतिक तंत्र के प्रकार को पहचानिए :
(i) सुगंधित दूध की सीलबंद बोतल
(ii) बंद थर्मस फ्लास्क में रखी बर्फ़
5. प्रावस्था नियम का समीकरण लिखिए। 1
6. व्याख्या कीजिए कि $\mathrm{NH}_{4} \mathrm{Cl}$ के जलीय विलयन की प्रकृति अम्लीय क्यों होती है ।
7. निम्नलिखित अभिक्रिया

$$
2 \mathrm{O}_{3}(\mathrm{~g}) \rightarrow 3 \mathrm{O}_{2}(\mathrm{~g})
$$

के लिए O_{3} अथवा O_{2} की सांद्रताओं में परिवर्तन के पदों में तात्क्षणिक दर के लिए व्यंजक लिखिए।

भाग ख

किन्हीं पाँच प्रश्नों के उत्तर दीजिए ।
8. सामान्य ताप पर, निम्नलिखित में से किसका पृष्ठ तनाव सबसे अधिक होगा : जल, मेथिल सायनाइड या मेथैनॉल ? कारण भी बताइए।2
9. चालकता उत्पन्न होने के कारण के आधार पर नैज तथा अपद्रव्यी अर्धचालकों के बीच अंतर बताइए।2
10. निम्नलिखित में से मात्रा स्वतंत्र और मात्राश्रित चरों को पहचानिए :
(i) किसी पिंड का तापमान
(ii) किसी पदार्थ में उपस्थित मोलों की संख्या
(iii) दूध को उबालने के लिए खर्च की गई भोजन पकाने की गैस की मात्रा
(iv) विशिष्ट ऊष्मा
11. समांगी उत्प्रेण और विषमांगी उत्प्रेरण वाली रासायनिक अभिक्रियाओं का एक-एक उदाहरण दीजिए।
12. संगत अवस्थाओं का नियम लिखिए। 2
13. $\mathrm{NH}_{4} \mathrm{OH}$ के जलीय विलयन में $\mathrm{NH}_{4} \mathrm{Cl}$ मिलाने पर pH मान कम हो जाता है। व्याख्या कीजिए। 2
14. निम्नलिखित अभिक्रिया पर
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}), \Delta_{\mathrm{r}} \mathrm{H}^{\circ}=-92 \cdot 2 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(i) दाब में वृद्धि और
(ii) तापमान में वृद्धि

के प्रभाव की व्याख्या कीजिए।
CHE-04
P.T.O.

भाग ग

किन्हीं पाँच प्रश्नों के उत्तर दीजिए। $5 \times 3=15$
15. आदर्श गैस समीकरण से वान्डर वाल्स समीकरण व्युत्पन्न कीजिए।
16. $\mathrm{Bi}-\mathrm{Cd}$ तंत्र के लिए नामांकित प्रावस्था आरेख बनाइए।
17. संगुणन प्रदर्शित करने वाले किसी विलेय के लिए वान्ट हॉफ गुणांक का व्यंजक व्युत्पन्न कीजिए।
18. प्रत्येक का एक-एक उदाहरण देते हुए 'आबंध वियोजन ऊर्जा' और ‘आबंध एन्थैल्पी’ के बीच अंतर स्पष्ट कीजिए।3
19. हेल्महोल्ट्ऱज़ मुक्त ऊर्जा (A) की परिभाषा से आरंभ करते हुए इसके (i) स्थिर आयतन पर ताप के साथ परिवर्तन और (ii) स्थिर ताप पर आयतन के साथ परिवर्तन के लिए संबंध व्युत्पन्न कीजिए।
20. आदर्श विलयन क्या होता है ? जब किसी द्रव A के $100 \mathrm{~cm}^{3}$ और द्रव B के $250 \mathrm{~cm}^{3}$ मिश्रित किए गए, तो प्राप्त विलयन का आयतन $353 \mathrm{~cm}^{3}$ था । यह किस प्रकार का विलयन है - आदर्श अथवा अनादर्श ? ऐसे विलयनों का एक और उदाहरण दीजिए।
21. (क) 'सक्रियित संकुल’ और 'संक्रमण अवस्था' के बीच अंतर बताइए।
(ख) पारगमन गुणांक क्या होता है ?

भाग घ

किन्हीं पाँच प्रश्नों के उत्तर दीजिए। $5 \times 4=20$
22. निम्नलिखित सेल में हो रही अभिक्रिया के लिए ΔG° परिकलित कीजिए :

$$
\mathrm{Al}(\mathrm{~s})\left|\mathrm{Al}^{3+}(1 \mathrm{M}) \| \mathrm{Cu}^{2+}(1 \mathrm{M})\right| \mathrm{Cu}(\mathrm{~s})
$$

मानक इलेक्ट्रोड विभव हैं : $E_{\mathrm{Al}^{3+} / \mathrm{Al}}^{0}=-1.66 \mathrm{~V}$ और

$$
E_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{0}=+0.34 \mathrm{~V}
$$

23. प्रकाश-रसायन के दो नियम लिखिए। किसी उत्पाद के बनने की क्वान्टम दक्षता को परिभाषित कीजिए। कुछ अभिक्रियाएँ बहुत अधिक क्वान्टम दक्षता क्यों दर्शाती हैं ?
24. दो विद्युत्-अपघटनी सेलों को श्रेणी में जोड़ा गया। इनमें से (i) एक में AgNO_{3} विलयन और (ii) दूसरे में $500 \mathrm{~cm}^{3}$ विलयन है जिसमें $10.0 \mathrm{~g} \mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ घुला हुआ है । उनमें 30 मिनट तक विद्युत्-धारा प्रवाहित करने पर यह पाया गया कि 1.307 g सिल्वर निक्षेपित हुआ है । विद्युत्-अपघटन के बाद, कॉपर सल्फेट विलयन में कॉपर की ग्राम प्रति लीटर $\left(\mathrm{gL}^{-1}\right)$ में सांद्रता परिकलित कीजिए।
(परमाणु द्रव्यमान इस प्रकार हैं : $\mathrm{Cu}=63 \cdot 54 ; \mathrm{Ag}=108$)
25. निम्नलिखित परिघटनाओं की व्याख्या कीजिए और उनके होने का कारण बताइए :
(क) ब्राउनी गति
(ख) टिन्डल प्रभाव
26. भापीय आसवन के सिद्धांत की व्याख्या कीजिए। जब जल में अमिश्रणीय किसी द्रव का कुल दाब $7.5 \times 10^{4} \mathrm{~Pa}$ पर $95.6^{\circ} \mathrm{C}$ पर भापीय आसवन किया गया तब आसुत में प्रति ग्राम जल के लिए द्रव के 1.20 g पाए गए। द्रव का मोलर द्रव्यमान परिकलित कीजिए । $95.6^{\circ} \mathrm{C}$ पर जल का वाष्प दाब $6.5 \times 10^{4} \mathrm{~Pa}$ है।
27. 25.0 g बेन्ज़ीन में घुला हुआ 2.0 g बेन्ज़ोइक अम्ल 1.62 K का हिमांक अवनमन प्रदर्शित करता है। बेन्ज़ोइक अम्ल का संगुणन प्रतिशत क्या है ? बेन्ज़ीन के लिए K_{f} का मान $4.9 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$ है।
28. (i) क्लॉसियस और (ii) केल्विन द्वारा दिए गए ऊष्मागतिकी के द्वितीय नियम के दो प्रकथनों को बताइए। किसी आदर्श गैस के 3.5 मोलों के $2.5 \times 10^{-3} \mathrm{~m}^{3}$ से $0.25 \mathrm{~m}^{3}$ तक समतापी और उत्क्रमणीय प्रसार के लिए एन्ट्रॉपी परिवर्तन क्या होगा?
