No. of Printed Pages : 3

BIME-026

DIPLOMA – VIEP – MECHANICAL ENGINEERING (DMEVI)

Term-End Examination

June, 2016

00476

BIME-026 : HEAT TRANSFER

Time : 2 hours

Maximum Marks: 70

Note: Attempt any five questions. All questions carry equal marks. Use of scientific calculator is allowed.

- 1. (a) What is the difference between the steady state and unsteady state of heat transfer?
 - (b) What are the applications of heat transfer study? Give some suitable examples. 7+7
- (a) Natural convection in water in lakes plays an important role in saving the lives of fishes when the atmospheric temperature falls below 0°C. Comment.
 - (b) What is Fourier's law of heat conduction ?
 What are the assumptions made for Fourier's law of heat conduction ? 7+7

BIME-026

P.T.O.

3. (a) A plane wall, 20 cm thick, has a thermal conductivity given by the following relation :

$K = 2t \ 0.005 \ T \ W/m-K,$

where T is temperature in Kelvin. If two surfaces of the wall are at 150°C and 50°C, determine the rate of heat transfer for a wall of $3 \text{ m} \times 5 \text{ m}$.

(b) A hot plate 1 m × 2 m is maintained at 320°C. Air at 20°C moves over the plate. If h = 40 watts/m²°C, find the rate of heat transfer.

7 + 7

7 + 7

- **4.** (a) Derive an expression for the critical radius of insulation for a cylinder.
 - (b) The walls of a house are 0.3 m thick and the total surface area of the walls is 100 m². Thermal conductivity (K) of the walls = 1 W/m-K. Temperature of outside air is 37°C and inside air is 27°C. Heat transfer coefficients inside and outside are 20 W/m²-K and 10 W/m²-K respectively. Calculate the inside and outside wall temperature, and heat transfer rate through the walls.

BIME-026

2

- 5. (a) What do you understand by fin effectiveness and fin efficiency?
 - (b) A composite slab has two layers of different materials with thermal conductivity 'K₁' and 'K₂'. Find the equivalent thermal conductivity of the slab, if each layer has the same thickness.
- 6. (a) What is Prandtl Number (Pr)? What is its significance?
 - (b) The sun emits maximum radiation at $\lambda = 0.52 \mu$. Assuming the sun as a black body, find the surface temperature of the sun, and emissive power at that temperature. 7+7
- 7. (a) Explain absorptivity, reflectivity and transmissivity.
 - (b) Find the shape factors for the hemispherical surface and a plane surface as shown in Figure 1. 7+7

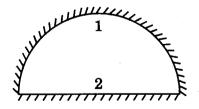


Figure 1

1,000