No. of Printed Pages : 5

BCE-046

DIPLOMA IN CIVIL ENGINEERING DCLE(G)

Term-End Examination

June, 2016

00246

BCE-046 : SOIL MECHANICS AND FOUNDATION ENGINEERING

Time : 2 hours

Maximum Marks: 70

- Note: Question no. 1 is compulsory. Attempt four more questions from the remaining questions. All questions carry equal marks.
- **1.** Choose the correct alternative : $7 \times 2 = 14$
 - (a) Uniformity coefficient can be expressed as
 - (i) D_{30}/D_{10}
 - (ii) D_{60}/D_{10}
 - (iii) D₃₀/D₆₀
 - (iv) $D_{30}^2 / (D_{60} \times D_{10})$

BCE-046

- (b) The void ratio of a saturated soil with water content 15% and specific gravity 2.6 is
 - (i) 0·15
 - (ii) **0.26**
 - (iii) 0·39
 - (iv) 0.45
- (c) The unconfined compressive strength of a cohesive soil is σ . The cohesion of this soil will be
 - (i) $\frac{\sigma}{2}$
 - (ii) σ
 - (iii) 20
 - (iv) 3σ
- (d) The total stress on the soil is 25 kN/m², and pore pressure is 10 kN/m², then effective stress will be (in kN/m²)
 - (i) **25**
 - (ii) 10
 - (iii) 15
 - (iv) 35
- (e) On increasing the temperature, the permeability of soil
 - (i) increases
 - (ii) decreases slowly
 - (iii) decreases suddenly
 - (iv) does not change

BCE-046

- (**f**) Zero air void line is
 - 100% saturation line (i)
 - 90% saturation line (ii)
 - (iii) 10% saturation line
 - (iv) Zero percent saturation line
- liquid limit. plastic limit and If the (**g**) shrinkage limit of the soil are 30%, 20% and 10% respectively, then plasticity index will be
 - (i) 10%
 - (ii) 20%
 - (iii) **30%**
 - (iv) 40%
- Using phase relationship, prove that **2.** (a)

$$\gamma_{\rm sat} = \frac{(G+e)\,\gamma_{\rm w}}{1+e}\,.$$

- The water content of a saturated soil is 40% **(b)** and specific gravity of soil solid is 2.65. Find the void ratio and porosity. Also find the degree of saturation, if the water content gets reduced to 10% on drying.
- Define compression index, coefficient 3. of (a) of volume change coefficient and consolidation.

Discuss the factors affecting compaction. (**b**) P.T.O. **BCE-046** 3

7

7

7

7

- 4. (a) A sand deposit is made up of three horizontal layers of equal thickness. The permeability of the top, middle and bottom layers in cm/sec are $2 \cdot 1 \times 10^{-6}$, $3 \cdot 2 \times 10^{-6}$ and $3 \cdot 7 \times 10^{-6}$ cm/sec, respectively. Find the equivalent permeability in horizontal and vertical directions.
 - (b) Derive the relation used for finding permeability by falling head method.
- 5. (a) Explain the methods of exploration by borings.
 - (b) The following results are obtained from a series of drained direct shear tests on silty clay. Find c & φ.

S.No.	Normal stress (kPa)	Max. shear stress (kPa)
1	10	10
2	20	14.5
3	30	20

- 6. (a) Explain General shear failure, Local shear failure and Punching shear failure.
 - (b) Find the ultimate and safe bearing capacity of a strip footing of 2.0 m width resting on the surface of a saturated clay. Take $c = 65 \text{ kN/m}^2$ and factor of safety as 3.

BCE-046

7

7

7

7

7

7

- 7. (a) Why are under-reamed piles provided ? Explain with a neat sketch.
 - (b) A circular pile of diameter 600 mm and 11 m long, penetrates a deposit of clay with $c = 40 \text{ kN/m}^2$. Take m = 0.65. Find the skin friction.
- 8. Write short notes on any *two* of the following: $2 \times 7 \pm 14$
 - (a) Direct shear test
 - (b) Types of foundations
 - (c) Determination of liquid limit by Casagrande method

BCE-046

1,000

7

7