No. of Printed Pages: 4

BIEE-024

B.Tech. - VIEP - ELECTRICAL ENGINEERING (BTELVI)

Term-End Examination

00226

June, 2016

BIEE-024: POWER ELECTRONICS

Time: 3 hours

Maximum Marks: 70

Note: Attempt any **seven** questions. All questions carry equal marks. Missing data may be suitably assumed. Use of scientific calculator is permitted.

1. (a) Explain the I - V characteristics of SCR.

5

(b) What is the difference between a thyristor and a TRIAC? Draw and explain the V – I characteristics of TRIAC.

5

2. (a) What is reverse recovery time of the power semiconductor diode? The forward voltage drop of a power diode is $V_D = 1.2 \text{ V}$ at $I_D = 300 \text{ A}$. Assuming that n = 2 and $V_T = 25.7 \text{ mV}$, find the reverse saturation current (I_S) .

5

(b) What is the purpose of dv/dt protection?
What is the common method of dv/dt protection?

5

BIEE-024

1

P.T.O.

- 3. (a) Differentiate between semi-converter and full converter circuit. Draw any one semi-converter and full-converter circuit.
 - (b) Explain gate trigger controller circuit of SCR. 5
- 4. Draw the two-transistor model of a thyristor.

 Explain the turn-off and turn-on characteristics of a thyristor.

 5+5
- 5. Ten thyristors are used in a string to withstand a d.c. voltage of $V_s=15$ kV. The maximum leakage current and recovery charge differences of the thyristors are 10 mA and 150 μ C, respectively. Each thyristor has a voltage-sharing resistance of R=56 k Ω and capacitance of $C_1=0.5$ μ F. Determine
 - (a) the maximum steady state voltage sharing $V_{DS\;(max)}$,
 - (b) the steady state voltage derating factor,
 - (c) the maximum transient voltage sharing $V_{DT\;(max)}$, and
 - (d) the transient voltage derating factor. 10
- 6. Draw and explain the working of a single-phase dual converter. Also draw its V-I characteristics. What is the cause of circulating current in dual converters?

 5+3+2

7. What are the main effects of source inductance for a full-converter? A three-phase full-converter is fed by 400 volts, three-phase, 50 Hz supply. The average load current is 150 A and the load is highly inductive. For a firing angle of 60°, find the output power, average output voltage, rms and peak current through the thyristors and peak inverse voltage.

3+7

8. With the help of a neat circuit diagram and waveforms, explain briefly the operation of a transistorised 3-phase bridge inverter with resistive load in 180° conduction mode.

10

- 9. Circuit in Figure 1 employing complementary commutation has $V_s=200$ V, $R_1=10$ Ω and $R_2=100$ Ω . Determine the
 - (a) peak value of current through thyristors T_1 and T_2 ,
 - (b) value of capacitor C if each thyristor has a turn-off time of 40 μ s. Take a factor of safety 2.

10

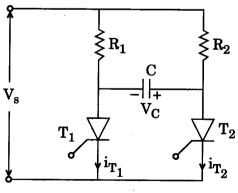


Figure 1

BIEE-024

- 10. Write short notes on any *two* of the following: $2\times5=10$
 - (a) Thyristor Firing Circuits
 - (b) Series and Parallel Connections of Diode
 - (c) Impulse Commutation
 - (d) Sinusoidal Pulse Width Modulation (SPWM)