No. of Printed Pages: 4

BIEE-014

B.Tech. - VIEP - ELECTRICAL ENGINEERING (BTELVI)

Term-End Examination June, 2016

102NA

BIFF-014: NETWORK THEORY

Time: 3 hours

Maximum Marks: 70

Note:

- (i) Attempt any five questions.
- Use of scientific calculator is allowed. (ii)
- Missing data, if any, may be suitably assumed. (iii)
- Explain the following with an example each: (a) 1.
 - Network mesh and Network loop (i)
 - (ii) Planar and Non-planar graphs
 - and Reduced (iii) Incidence matrix incidence matrix
 - Draw the graph of the network shown in (b) Figure 1. Select a suitable tree to write tie-set schedule. Hence, find the three loop currents.

 1Ω 1Ω 1Ω 1Ω 1Ω 1 V 1 V 1 V 1 V

Figure 1

BIEE-014

1

P.T.O.

8

- 2. (a) Discuss the maximum power transfer theorem for either in a.c. or d.c. circuit.
 - (b) In the network shown in Figure 2, there are four sources that act on the load \mathbf{Z}_{L} . If the load is variable, for what value will load \mathbf{Z}_{L} receive the maximum power?

7

7

7

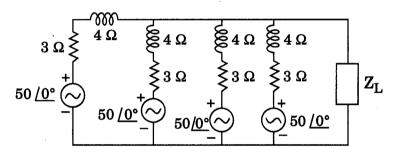


Figure 2

3. (a) What are the restrictions on Driving point function?

(b) Obtain the Pole-zero diagram of the given function and obtain the time domain response.

$$I(s) = \frac{2s}{(s+1)(s^2 + 2s + 4)}$$

4. (a) Solve the circuit shown in Figure 3 using Millman's theorem.

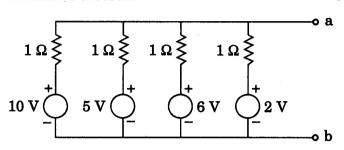
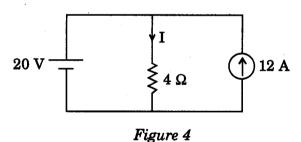
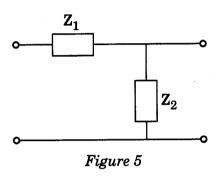



Figure 3

- (b) (i) State the Super position theorem.
 - (ii) Find out the current I shown in Figure 4.


4+3=7

7

- (a) Write in detail about the conditions to be fulfilled for a function to be positive real.
 - (b) Check whether $F(s) = s + \sqrt{s^2 + 1}$ is a positive real function.

BIEE-014

6. (a) The image impedance of the network shown in Figure 5 are $Z_{i1}=200~\Omega$ and $Z_{i2}=100~\Omega$. Calculate the values of impedances Z_1 and Z_2 .

(b) What is a band pass filter? Prove that the cut-off frequency $f_c = \frac{1}{4\pi\sqrt{LC}}$ for constant-K high pass filter (T-section).

- 7. Write short notes on any **two** of the following: $2\times7=14$
 - (a) Transfer function and its properties
 - (b) Interconnections of two port networks
 - (c) Cut set matrix

7

7