No. of Printed Pages : 3

B.Tech. - VIEP - ELECTRICAL ENGINEERING (BTELVI)

Term-End Examination

June, 2016

BIEE-013 : ELECTRICAL AND ELECTRONICS ENGINEERING MATERIALS

Time : 3 hours

Maximum Marks: 70

Note :

nn126

- (i) Attempt any **seven** questions.
- (ii) All questions carry equal marks.
- (iii) Symbols used have their usual meanings.
- (iv) Use of scientific calculator is allowed.
- 1. What is bond energy ? Discuss the ionic, covalent and metallic bonding in crystals with suitable examples.
- **2.** (a) With reference to crystal structure, define the following terms :
 - (i) Crystal lattice
 - (ii) Unit cell
 - (iii) Atomic radius
 - (iv) Co-ordination number
 - (b) Derive the expression of atomic radius of a face centred cubic (FCC) lattice in terms of lattice parameter 'a'.

BIEE-013

1

P.T.O.

5

BIEE-013

10

5

3.	(a)	What is inter-planar spacing?	5
	(b)	Derive the relation between inter-planar spacing and Miller indices. Hence show that for a simple cube system,	
		$\mathbf{d}_{100}: \mathbf{d}_{110}: \mathbf{d}_{111} = \sqrt{6}: \sqrt{3}: \sqrt{2}.$	· 5
4.	(a)	Define thermal conductivity of solids. Mention some features of thermal	
		conductivity of metals.	5
	(b)	State and prove Wiedemann-Franz-Lorenz	5
			0
5.	(a)	Derive the expression for the heat	
		developed per cubic metre per second in a	
		conductor carrying a current density 'J' as a	_
		result of an applied field 'E'.	5
	(b)	Explain Seebeck effect.	5
6.	Distinguish between the following :		
	(a)	Soft and Hard magnetic materials	5
	(b)	Ferromagnetism and Antiferromagnetism	5
7.	(a)	Discuss p-type and n-type semiconductor	
		materials with examples.	5
	(b)	With a relevant diagram derive the	
		expression for Hall coefficient.	5
8.	What is diamagnetism ? Using Langevin theory,		
	derive an expression for diamagnetic		
	susceptibility.		10

BIEE-013

2

I

- 9. (a) Explain the phenomenon of magnetostriction and give its salient features.
 - (b) What are ferrites ? Mention their properties and applications.
- 10. Write short notes on any *two* of the following: 2×5=10
 - (a) Properties of semi-conducting materials
 - (b) p-n junction diode
 - (c) Structural imperfections
 - (d) Mechanical properties of metals

5

5