No. of Printed Pages : 3

**BIEE-001** 

### **BTCSVI / BTECVI / BTELVI**

## **Term-End Examination**

### **June**, 2016

# 00136

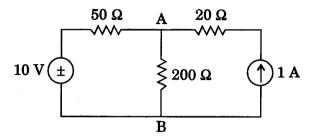
## **BIEE-001 : BASICS OF ELECTRICAL ENGINEERING**

Time : 3 hours

Maximum Marks: 70

Note: Answer five questions in all. All questions carry equal marks. Use of scientific calculator is allowed.

| 1. | (a) | What is meant by E.M.F. of a source ?<br>Distinguish between ideal and practical<br>voltage sources.                 | 7 |
|----|-----|----------------------------------------------------------------------------------------------------------------------|---|
|    | (b) | Discuss critically the active, reactive and<br>apparent power in a single phase<br>A.C. circuit and their relations. | 7 |
| 2. | (a) | Explain the construction and working of a lead acid storage battery.                                                 | 7 |
|    | (b) | Explain the charging method used for a lead acid battery.                                                            | 7 |
| 3. | (a) | What are the important features of network theorems ? State Thevenin's theorem.                                      | 7 |


1

### **BIEE-001**

. . . . . . . . .

P.T.O.

(b) State Norton's theorem. Determine the voltage across 200  $\Omega$  resistance in the following network by using Norton's theorem :



- 4. (a) Derive an expression for the field strength at the centre of a long solenoid of 'N' turns having a length of 'l' metres and carrying a current 'I' amperes.
  - (b) A cast steel electromagnet has an air gap length of 3 mm and an iron path at length 40 cm. Find the number of ampere turns necessary to produce a flux density of  $0.7 \text{ Wb/m}^2$  in the gap. Neglect leakage and fringing. Assume flux density in gap = flux density in iron portion =  $0.7 \text{ Wb/m}^2$ .
- 5. (a) Derive the relationship between the voltage and current for a purely inductive circuit. Also show that the average power consumed by the above circuit is zero.
  - (b) Draw the phasor diagrams for the following:
    - (i) Purely resistive circuit
    - (ii) R-L circuit
    - (iii) R-C circuit
    - (iv) R-L-C circuit

**BIEE-001** 

2

7

7

7

7

7

- 6. (a) Explain why the series resonant circuit is often regarded as the acceptor circuit and the parallel circuit as the rejector circuit.
  - (b) A coil of resistance 20  $\Omega$  and inductance 0.2 H is connected in series with a condenser of capacitance 200  $\mu$ F across a 250 V, 50 Hz supply. Determine the (i) impedance, (ii) current, and (iii) power factor.
- 7. Write short notes on any *two* of the following:  $2 \times 7 = 14$ 
  - (a) Superposition Theorem
  - (b) r.m.s. value and average value of A.C. sinusoidal current
  - (c) Energy stored in a magnetic field
  - (d) Force between two parallel current carrying conductors

**BIEE-001** 

1,000

7

7