No. of Printed Pages: 3

B.Tech. - VIEP - COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

**Term-End Examination** 

00330

June, 2016

## **BICS-018 : THEORY OF COMPUTATION**

Time : 3 hours

Maximum Marks: 70

**Note :** Attempt any **seven** questions. All questions carry equal marks.

| 1. | (a)          | Enumerate the difference between DFA and NFA with the help of an example.                                                                                   | 5 |
|----|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|    | (b)          | Construct a Mealy machine which can<br>output EVEN, ODD according to the total<br>number of even and odd 1's encountered.<br>The input symbols are 0 and 1. | 5 |
| 2. | ( <b>a</b> ) | Design a DFA for all the strings over $\{a, b\}$ ,<br>where number of b's are $3k + 1$ and<br>k = 0, 1, 2,                                                  | 5 |
|    | (b)          | Discuss the closure properties of regular languages.                                                                                                        | 5 |
|    |              |                                                                                                                                                             | ~ |

**BICS-018** 

P.T.O.

**BICS-018** 

1

- **3.** (a) Construct a finite automaton equivalent to the regular expression  $(10 + (0 + 11) 1^* 0)$ .
  - (b) Find the regular expression corresponding to the automaton given below :



- 4. Define Deterministic Push Down Automata (DPDA). Design a DPDA for the language  $\{a^n b^n \mid n \ge 1\}$ . 10
- 5. Define Turing Machine. Design a Turing Machine that concatenates two strings of 0's separated by a blank. 10
- 6. Explain the following : 5+5=10
  (a) Two-way Infinite Tape Turing Machine
  (b) Multiple Tracks Turing Machine
  7. Prove that the universal language is recursively enumerable. 10
  8. Prove that the halting problem is undecidable. 10

**BICS-018** 

2

5

5

- 9. How is a Turing Machine different from RAM? Explain and discuss NP-complete and NP-hard problems.
- 10. Write short notes on any two of the<br/>following: $2 \times 5 = 10$ 
  - (a) Myhill-Nerode Theorem
  - (b) Church's Hypothesis
  - (c) Travelling Salesman Problem

**BICS-018** 

1,000

10