No. of Printed Pages: 3

DD496

BICS-010

B.Tech. – VIEP – COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

Term-End Examination

June, 2016

BICS-010 : FORMAL LANGUAGES AND AUTOMATA

Time : 3 hours Maximum Marks : 70

Note : Attempt any **seven** questions. All questions carry equal marks.

- 1. (a) What are the concepts of Automata Theory? Explain with the help of some examples.
 - (b) Define formal definition of finite automata.
 State the diagrams of the two-state finite automaton and five-state finite automaton. 5
- 2. (a) Define regular expressions and find the regular expression for the following: 5
 L = {ω | every odd position of ω is a 1 defined over Σ = {0, 1}}
 - (b) Prove (or) disprove the following for the regular expressions r and s : 5
 - (i) $(rs + r)^* r = r(sr + r)^*$
 - (ii) $(r^*s^*)^* = (r + s)^*$

BICS-010

P.T.O.

5

3. (a) Show that L = { $\omega \omega \mid \omega \in \{a, b\}^*$ } is not regular. 5 Prove L = { $\omega \omega^R | \omega \in (a | b)$ } is not regular (b) using pumping lemma. 5 Define ambiguous grammar and give an 4. (a) example to show that the following grammar is ambiguous. $\mathbf{5}$ $S \rightarrow aSbS \mid bSaS \mid \epsilon$ (b) When is a grammar said to be in reduced form ? Explain. 5 following Convert 5. (a) the context-free grammar to pushdown automata : 5 $S \rightarrow aA \mid bB$ $A \rightarrow aB \mid a$ $B \rightarrow b$ (b) State and explain Myhill-Nerode theorem with the help of example grammar. 5 Show the equivalence of CFL and PDA. 10 6. Design a Turing Machine that recognizes 7. (a) the set $\{0^{2n} \ 1^n \ge n = 0\}$. 5 Design a Turing Machine which will (b) recognize the strings containing equal number of 0's and 1's. 5 **BICS-010** 2

8.	(a)	What is recursively enumerable language ?	
		Explain with the help of an example.	5
	(b)	Show that if L and L^R are recursively	
		enumerable, then L is recursive.	5
9.	(a)	What are NP Complete and NP Hard problems ? Explain with the help of	_
		examples.	5
	(b)	Find whether the post correspondence problem $P = \{\{10, 101\}, \{011, 11\}, \{101, 011\}\}$	
		has a match. Give the solution.	5
10.	(a)	What is halting problem ? Explain.	5
	(b)	Explain Turing reducibility machine.	5

BICS-010

1,000