ET-302 (A)

	B.Tech. Civil (Construction Management)/ B.Tech. Civil (Water Resources Engineering)										
00	Term-End Examination June, 2016										
ET	ET-302 (A) : COMPUTER PROGRAMMING AND NUMERICAL ANALYSIS										
Time	Time : 3 hours Maximum Marks : 70										
Note	•	Attempt any five questions. All questions carry eq marks. Use of scientific calculator is permitted.	ual								
1.	(a)	Draw a flow chart to read 20 numbers and to determine its average and standard deviation	7								
	(b)	Write a FORTRAN programme to calculate the roots of a quadratic equation represented by $ax^3 + bx^2 + cx + d = 0$.	7								
2.	(a)	What is a file ? Explain the various types of files used	7								
	(b)	Write a FORTRAN programme to tabulate	7								
		the function $f(x) = \frac{x^3 + 1.5x + 5}{x - 3}$ for									
		x = -10 to 10.									
3.	(a)	Find the root of the equation $x^3 - 4x - 9 = 0$, using the bisection method in four stages	7								
	(b)	Find graphically an approximate value of the root of equation $3-x=e^x-1$.	7								

ET-302 (A)

4. (a) Use Lagrange's formula to compute the value of y, when x = 9, if the following values of x and y are given :

x	5	7	11	13	17
y	150	392	1452	2366	5202

- (b) Using Newton Raphson method, find out 7 the root of the following equation correct to four decimal places : $3x = \cos x + 1$
- 5. (a) Determine the eigen values and eigen 7 vectors of the matrix X

$$\mathbf{X} = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$

(b) Using the iterative method, find the inverse 7 of matrix A

$$\mathbf{A} = \begin{bmatrix} 1 & 10 & 1 \\ 2 & 0 & 1 \\ 3 & 3 & 2 \end{bmatrix}$$

- - (b) Solve, by Jacobi's iteration method, the 7 equations : 20x + y - 2z = 173x + 20y - z = -182x - 3y + 20z = 25

ET-302 (A)

7

7. (a) Use Romberg's method to compute 7

 $\int_0^1 \frac{\mathrm{d}x}{1+x^2}$ correct to 4 decimal places.

(b) The table gives the distance in nautical miles 7 of the visible horizon for the given heights in feet above the earth's surface :

x = height	100	150	200	250	300	350	400
y = distance	10.63	13.03	15.04	16.81	18.42	19.90	21.27

Find the values of y when x = 218 ft and 410 ft.

8. Write short notes on following :

4x31/2=14

- (a) Muller's Method
- (b) Round off and Truncation error
- (c) Inverse Power Method
- (d) Eigen Value Problem

ET-302 (A)