No. of Printed Pages : 5

ET-101(A)

B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering) / B.Tech. (Aerospace Engineering) / BTCLEVI / BTMEVI / BTELVI / BTECVI / BTCSVI

20028

Term-End Examination

June, 2016

ET-101(A) : MATHEMATICS - I

Time : 3 hours

Maximum Marks : 70

Note : All the questions are **compulsory**. Use of scientific calculator is permitted.

- 1. Answer any *five* of the following :
 - (a) Find $\frac{dy}{dx}$, when

$$\sqrt{1-x^2} - \sqrt{1-y^2} = 4(x+y).$$

(b) Determine the values of 'a' and 'b' for which the function 'f' defined by

$$f(x) = \begin{cases} \sqrt{1-x} - ax, & \text{when } x < 1 \\ a^2x - b, & \text{when } x = 1 \\ 5x^2 - 4x, & \text{when } x > 1 \end{cases}$$

is continuous at x = 1.

ET-101(A)

P.T.O.

 $5 \times 4 = 20$

(c)

Evaluate the following limits if they exist :

(i)
$$\lim_{x \to 0} \left[\frac{x \tan^{-1} x}{1 - \cos x} \right]$$

(ii)
$$\lim_{x \to 1} \left[\frac{\sqrt{x^2 + 3} - \sqrt{5x - 1}}{x^2 - 1} \right]$$

(d) If
$$z = \cot^{-1}\left(\frac{y+x}{\sqrt{y}-\sqrt{x}}\right)$$
, prove that

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} + \frac{1}{4}\sin 2z = 0.$$

(f) If
$$y = p \sin (ln x) + q \cos (ln x)$$
, prove that
 $x^2y_2 + xy_1 + y = 0$.

Hence find y_{n+2} , using Leibnitz's theorem.

2. Answer any *four* of the following :

4×4=16

(a) Evaluate the following integrals :

(i)
$$\int_{0}^{1} \frac{dx}{2e^{x} - 1}$$

(ii) $\int_{0}^{\sqrt{3}/2} \frac{\tan(D \sin^{-1} x)}{\sqrt{1 - x^{2}}} dx$

ET-101(A)

(b)

Evaluate the following integrals :

(i)
$$\int e^{-x/2} \cdot \frac{\sqrt{1-\sin x}}{1+\cos x} dx$$
(ii)
$$\int \frac{dx}{x^2 \sqrt{x^2 - 1}}$$

(c)

A curve is drawn to pass through the points given by the following table :

x	0.5	1.0	1.5	2 ·0	2 ∙5	3.0	3∙5	4 ·0
у	2.5	2.0	2.4	2.7	2.8	3∙0	2.6	2 ·1

Estimate the area bounded by the curve, axis of x and the lines x = 1 and x = 4, using Simpson's Rule.

- (d) Solve the differential equation : $[\sin y + \frac{y}{x}(1+x)] dx + [x + ln x + x \cos y] dy = 0$
- (e) Find the total length of the curve, given by $x = a \cos^3 \theta; \quad y = a \sin^3 \theta.$
- **3.** Answer any *four* of the following : $4 \times 4 = 16$
 - (a) Find curl (ϕ grad ϕ), where $\phi \equiv \phi$ (x, y, z) = xyz.
 - (b) Find the gradient and the unit normal vector to the level surface,

$$x^2 + y^2 - z^2 = 4$$
 at (2, 1, 1).

ET-101(A)

P.T.O.

- (c) Show that $\frac{1}{r}$, where $\overrightarrow{r} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$ satisfies Laplace's equation.
- (d) Find the total work done, when a force → F = (2x + yz)i + xzj + (xy + 2z)k moves a particle along the curve, x = sin t, y = cos t, z = 1 from t = 0 to t = π/2.
 (e) Evaluate ∬ F . n dS, where S F = yzi + zxj + xyk and S is that part of the surface of the sphere, x² + y² + z² = 1, which lies in the first octant.

4. Answer any *three* of the following :

(a) Find the eigen values and the eigen vectors of the matrix

3	1	-1]
2	2	-1.
2	2	0

(b) Check whether

W = {
$$(a_1, a_2, a_3) | a_i \in \mathbf{R}, i = 1, 2, 3 \text{ and}$$

 $2a_1 - 3a_2 = a_3$ }

is a subspace of \mathbf{R}^3 ? If so, find its dimension and a basis.

ET-101(A)

3×6=18

(c) Let T be the linear operator on \mathbb{R}^3 defined by T(a₁, a₂, a₃) = (3a₁, a₁ - a₂, 2a₁ + a₂ + a₃). Is T invertible ? If so, find a rule for T⁻¹ like the one which defines T.

$$\begin{vmatrix} (b+c)^2 & a^2 & a^2 \\ b^2 & (c+a)^2 & b^2 \\ c^2 & c^2 & (a+b)^2 \end{vmatrix} = 2abc (a+b+c)^3.$$

ET-101(A)

(d)

Prove that

1,500