No. of Printed Pages: 4

B.Tech. – VIEP – Computer Science & Engg. (BTCSVI) / B.Tech. Electronics and Communication Engg. (BTECVI) / B.Tech. Electrical Engg. (BTELVI)

Term-End Examination

00106

June, 2016

BICE-007 : MATHEMATICS-III

Time : 3 hours

Maximum Marks: 70

Note: All questions are **compulsory**. Use of scientific calculator is permitted.

1.	Ansv	wer any <i>two</i>	of the foll	2×7=14	
	(a)	Show	that	the	function
		$u = e^{-2xy}$ the conjuga	sin (x ² – ate functio	y^2) is harmed on v as z = u +	onic. Find iv.
	(b)	1 Evaluate	$\int_{0}^{+i} (x^2 - iy)$) dz along th	e path
	(c)	(i) $y = x$ (ii) $y = x^2$ Evaluate	$\int_{C} \frac{3z}{(z^2)}$	$\frac{2^{2}+z+1}{-1)(z+3)}dz$	where
		C: z = 2	•		

BICE-007

P.T.O.

- 2. Answer any *two* of the following :
 - (a) The four moments about the working mean 28.5 of a distribution are 0.294, 7.144, 42.409 and 454.98. Calculate the mean. Also evaluate β_1 , β_2 and comment about the skewness and kurtosis of the distribution.
 - (b) Find the regression coefficients of y on x and of x on y and the correlation coefficient between x and y on the basis of the following records :
 Σxy = 350, x̄ = 5, Σx = 50, ȳ = 6, Σy = 60,

variance of x = 4 and variance of y = 9

- (c) The probability that a bomb dropped from a plane will hit the target is 1/5. If 6 bombs are dropped, find the probability that
 - (i) exactly two will strike the target,
 - (ii) at least two will hit the target.
- **3.** Answer any *two* of the following :

(a) A die is tossed thrice. Getting 5 or 6 on the die in a toss is success. Find the mean and variance of number of successes.

- (b) The distribution of the number of road accidents per day in a city is Poisson with mean 4. Find the number of days out of 100 days, when there will be
 - (i) no accident,
 - (ii) at least 2 accidents,
 - (iii) at most 3 accidents,
 - (iv) between 2 and 5 accidents.

BICE-007

2×7=14

(c) In a normal distribution of marks, 31% are under 45 and 8% are over 64. Find the mean and standard deviation of the distribution. It is given that, if

$$f(t) = \frac{1}{\sqrt{2\pi}} \int_{0}^{t} e^{-x^{2}/2} dx$$
, then

f(0.5) = 0.19 and f(1.4) = 0.42.

- 4. Answer any *two* of the following : $2 \times 7 = 14$
 - (a) Find a root of the following equation using the Bisection method, correct to three decimal places :

$$x^3 - 2x - 5$$

- (b) Using Regula-Falsi method, compute the real root of the equation xe^x = 2, correct to four decimal places.
- (c) Determine the root of the equation $\cos x - xe^x = 0$ using the method of Newton-Raphson.

5. Answer any *two* of the following : $2 \times 7 = 14$

(a) Solve by Gauss-Jordan method, the equations x + y + z = 9, 2x - 3y + 4z = 13, 3x + 4y + 5z = 40.

BICE-007

P.T.O.

3

(b) A rocket is launched from the ground. Its acceleration 'f' is noted for the first 80 seconds as given in the following table :

,			
t (sec)	$f(cm/sec^2)$		
0	30		
10	31.63		
20	33.34		
30	35.47		
40	37.75		
50	40 ·33		
60	43·25		
70	46 ·69		
80	50.67		

Estimate the velocity of the rocket at t = 80 sec employing Simpson's one-third rule.

(c) Solve the equation $\frac{dy}{dx} = -y$, y(0) = 1 for values of y at x = 0.1 and x = 0.2, using Runge-Kutta method of order three.

BICE-007

1,000