No. of Printed Pages: 3

BAS-012

B.Tech. AEROSPACE ENGINEERING (BTAE)

Term-End Examination

June, 2016

00188

BAS-012: AERODYNAMICS - I

Time: 3	hours Maximum Marks	Maximum Marks : 70	
Note: Attempt any seven questions. All questions carry equal marks.			
1. (a)	What is the difference between Euler's model and Navier-Stokes model of equations? Write the generic form of Navier-Stokes model.	6	
(b)	Write Bernoulli's equation for incompressible flow.	4	
2. (a)	Draw and explain the concept of subsonic-supersonic flow through the C-D nozzle and also show the variation in properties along the length of the nozzle.	6	
(b)	Explain supersonic flow over the nose of a blunt body.	4	
3. (a)	Derive the momentum equation in non-dimensional form for nozzle flow.	4	
(b)	With a neat sketch, briefly explain the flow in a C-D nozzle.	6	
BAS-012	. 1 P.	T.O.	

- **4.** Answer any *five* of the following questions in brief: $5\times 2=10$
 - (a) Distinguish between Ideal and Real fluids.
 - (b) What are the applications of thin airfoil theory?
 - (c) Why is it that liquid flows are incompressible?
 - (d) Write the general form of energy equation for a two-dimensional flow.
 - (e) What are the applications of lifting line theory?
 - (f) How is horse shoe vortex formed?
 - (g) What is meant by complex potential function?
 - (h) What is the significance of continuity condition?
- 5. (a) What are the characteristics of a vortex flow? State and prove Kutta-Joukowski's theorem.

(b) Explain how a flow over a circular cylinder can be transformed into a flow over a flat plate using Joukowski's transformation.

4

6

6.	(a)	Determine the condition that the velocity components $u = ax + by$, $v = cx + dy$ will satisfy the equation of continuity. Also find the magnitude of vorticity.	6
	(b)	Briefly explain the terms substantial derivative, corrective derivative and local derivative.	4
7.	(a)	Derive the temperature equation for an incompressible flow in partial differential form.	6
	(b)	How is flow over a cone different from flow over a wedge?	4
8.	(a)	Explain how measurements of pressure, velocity and Mach number can be carried out in a supersonic wind tunnel.	6
	(b)	How does lift and drag vary with the angle of attack for a supersonic profile ?	4
9.	Wri follo	te short notes on any two of the owing: $2 \times 5 =$	10
	(a)	Magnus Effect	
	(b)	Boundary Layer	
	(c)	Pitching Moment	
	(d)	Finite Wing	
		·	