No. of Printed Pages : 5

MCSE-004

MCA (Revised) Term-End Examination June, 2016

07346

MCSE-004 : NUMERICAL AND STATISTICAL COMPUTING

Time : 3 hours

Maximum Marks : 100

- **Note:** Question no. 1 is **compulsory**. Attempt any **three** questions from the rest. Use of calculator is allowed.
- 1. (a) If $\pi = \frac{22}{7}$ is approximated as 3.14, find the absolute error, relative error and relative percentage error.
 - (b) Solve the following system of equations by Jacobi iteration method :

1

8x - 3y + 2z = 204x + 11y - z = 336x + 3y + 12z = 35(Perform three iterations)

MCSE-004

P.T.O.

6

3

- (c) Find the real root of the equation $x = e^{-x}$, using Newton-Raphson method. List the cases where Newton's method fails. 4+2
- (d) Determine the polynomial in x that best fits as approximation of y by using Lagrange's interpolation, from the following data :

x	0	1	3	5	6	9
$\mathbf{y} = \mathbf{f}(\mathbf{x})$	-18	0	0	-248	0	13104

- (e) Find the value of $\int_{1}^{0} \log_{10} x \, dx$, taking 8 sub-intervals, correct to four decimal places, by Trapezoidal rule.
- (f) In the table below the values of y are consecutive terms of a series of which the number 21.6 is the 6th term. Find the first and the tenth term of the series.

x	3	4	5	6	7	8	9
У	2.7	6 ∙4	12 ·5	21 ·6	34.3	51.2	72.9

(g) Evaluate the integral $\int_{1}^{1} x^2 dx$ using Weddle's rule with h = 0.5.

MCSE-004

2

5

6

6

8

Find Newton's Backward Difference from **(a)** interpolating polynomial for the the following data :

x	4	6	8	10
f(x)	19	40	79	142

Hence using the polynomial interpolate f(9).

(b) Evaluate
$$\int_{0}^{1} \frac{dx}{1+x}$$
 using

- Composite Trapezoidal rule, (i)
- (ii) Composite Simpson rule with 2 and 4 subintervals.

The table below gives the value of tan x for (c) $0.10 \le x \le 0.30$:

x	0.10	0.15	0.20	0.25	0.30
y = tan x	0.1003	0.1511	0.2027	0.2553	0.3093

Find (i) $\tan 0.12$, and (ii) $\tan 0.26$.

A problem in statistics is given to the three 3. (a) students A, B and C, whose chances of solving it are $\frac{1}{2}, \frac{3}{4}$ and $\frac{1}{4}$ respectively. What is the probability that the problem will be solved?

3

MCSE-004

8

6

6

6

P.T.O.

2.

- (b) A farmer buys a quantity of cabbage seeds from a company that claims that approximately 90% of the seeds will germinate, if planted properly. If four seeds are planted, what is the probability that exactly two will germinate ?
- (c) Calculate the correlation coefficient for the following heights (in inches) of fathers (x) and their sons (y):

x :	65	66	67	67	68	69	70
y :	67	68	65	68	72	72	69

- 4. (a) 1000 light bulbs with mean life of 120 days are installed in a new factory and their length of life is normally distributed with the standard deviation of 20 days.
 - (i) How many bulbs will expire in less than 90 days?
 - (ii) If it is decided to replace all the bulbs together, what interval should be allowed between replacements, if not more than 10% should expire before replacement?
 - (b) In a partially destroyed laboratory, the record of an analysis of correlation data, the following results are legible :
 Variance of X = 9
 Regression equations :

8X - 10Y + 66 = 040X - 18Y - 214 = 0

MCSE-004

4

8

6

8

Find :

- The mean values of X and Y (i)
- The correlation coefficient between (ii) X and Y
- (iii) Standard deviation of Y

Given
$$\frac{dy}{dx} = y - x$$
, where $y(0) = 2$.

Find y(0.1) and y(0.2), correct to four decimal places, using Runge-Kutta Second Order method.

- **(b)** Write the pitfalls in the Gauss elimination method.
- (c) Solve the initial value problem to compute approximation for y(0.1) and y(0.2), using Euler's method with h 0·1. = $\frac{dy}{dt}$ + 2y = 3e^{-4t}, y(0) = 1. Compare with

exact solution $y(t) = \frac{5e^{-2t} - 3e^{-4t}}{2}$.

10

8

2

MCSE-004

7.000