MCA (Revised)
 Term-End Examination
 June, 2016

$\square 7.36$

MCSE-004 : NUMERICAL AND STATISTICAL COMPUTING

Time: 3 hours
Maximum Marks : 100
Note: Question no. 1 is compulsory. Attempt any three questions from the rest. Use of calculator is allowed.

1. (a) If $\pi=\frac{22}{7}$ is approximated as $3 \cdot 14$, find the absolute error, relative error and relative percentage error.
(b) Solve the following system of equations by Jacobi iteration method :

$$
\begin{aligned}
& 8 x-3 y+2 z=20 \\
& 4 x+11 y-z=33 \\
& 6 x+3 y+12 z=35
\end{aligned}
$$

(Perform three iterations)
(c) Find the real root of the equation $x=e^{-x}$, using Newton-Raphson method. List the cases where Newton's method fails. 4+2
(d) Determine the polynomial in x that best fits as approximation of y by using, Lagrange's interpolation, from the following data :

x	0	1	3	5	6	9
$y=f(x)$	-18	0	0	-248	0	13104

(e) Find the value of $\int_{1}^{5} \log _{10} x d x$, taking 8
sub-intervals, correct to four decimal places, by Trapezoidal rule.
(f) In the table below the values of y are consecutive terms of a series of which the number 21.6 is the $6^{\text {th }}$ term. Find the first and the tenth term of the series.

x	3	4	5	6	7	8	9
y	2.7	$6 \cdot 4$	12.5	$21 \cdot 6$	$34 \cdot 3$	$51 \cdot 2$	72.9

(g) Evaluate the integral $\int_{1}^{4} x^{2} d x$ using

Weddle's rule with $h=0.5$.
2. (a) Find Newton's Backward Difference from the interpolating polynomial for the following data :

x	4	6	8	10
$\mathrm{f}(\mathrm{x})$	19	40	79	142

Hence using the polynomial interpolate f(9).
(b) Evaluate $\int_{0}^{1} \frac{d x}{1+x}$ using
(i) Composite Trapezoidal rule,
(ii) Composite Simpson rule with 2 and 4 subintervals.
(c) The table below gives the value of $\tan x$ for $0.10 \leq x \leq 0.30$:

x	0.10	0.15	0.20	0.25	0.30
$y=\tan x$	0.1003	0.1511	0.2027	0.2553	0.3093

Find (i) $\tan 0.12$, and (ii) $\tan \mathbf{0 . 2 6}$.
3. (a) A problem in statistics is given to the three students A, B and C, whose chances of solving it are $\frac{1}{2}, \frac{3}{4}$ and $\frac{1}{4}$ respectively. What is the probability that the problem will be solved?
(b) A farmer buys a quantity of cabbage seeds from a company that claims that approximately 90% of the seeds will germinate, if planted properly. If four seeds are planted, what is the probability that exactly two will germinate?
(c) Calculate the correlation coefficient for the following heights (in inches) of fathers (x) and their sons (y) :

$\mathrm{x}:$	65	66	67	67	68	69	70
$\mathrm{y}:$	67	68	65	68	72	72	69

4. (a) 1000 light bulbs with mean life of 120 days are installed in a new factory and their length of life is normally distributed with the standard deviation of 20 days.
(i) How many bulbs will expire in less than 90 days?
(ii) If it is decided to replace all the bulbs together, what interval should be allowed between replacements, if not more than 10% should expire before replacement?
(b) In a partially destroyed laboratory, the record of an analysis of correlation data, the following results are legible :
Variance of $\mathrm{X}=9$
Regression equations:

$$
\begin{aligned}
& 8 X-10 Y+66=0 \\
& 40 X-18 Y-214=0
\end{aligned}
$$

Find :
(i) The mean values of X and Y
(ii) The correlation coefficient between X and Y
(iii) Standard deviation of Y
5. (a) Given $\frac{d y}{d x}=y-x$, where $y(0)=2$.

Find $y(0 \cdot 1)$ and $y(0 \cdot 2)$, correct to four decimal places, using Runge-Kutta Second Order method.
(b) Write the pitfalls in the Gauss elimination method.
(c) Solve the initial value problem to compute approximation for $y(0.1)$ and $y(0.2)$, using Euler's method with $\mathrm{h}=0 \cdot 1$, $\frac{d y}{d t}+2 y=3 e^{-4 t}, y(0)=1$. Compare with exact solution $\mathrm{y}(\mathrm{t})=\frac{5 \mathrm{e}^{-2 \mathrm{t}}-3 \mathrm{e}^{-4 \mathrm{t}}}{2}$.

