No. of Printed Pages : 5

MCSE-003

MCA (Revised)

Term-End Examination

03056

June, 2016

MCSE-003 : ARTIFICIAL INTELLIGENCE AND KNOWLEDGE MANAGEMENT

Time : 3 hours

Maximum Marks : 100

Note: Question number 1 is compulsory. Attempt any three questions from the rest.

1. (a)	Use Resolution to determine the validity of	
	the following :	5
•	$(\forall \mathbf{x}) (\exists \mathbf{y}) (\mathbf{A}(\mathbf{x}) \land \mathbf{B}(\mathbf{y}) \rightarrow$	
	$(A(y) \land B(x) \rightarrow (A(x) \rightarrow B(x)))$	
(b)	Transform the $P \lor (\neg P \land Q \land R)$ in Conjunctive Normal Form.	5
(c)	Write a LISP program to find the maximum of 3 numbers.	5
(d)	Discuss the concept of consistency and completeness testing of Expert system.	5
(e)	Explain the rules of inference of propositional logic, noted as follows :	5
	(i) Modus Ponens	
	(ii) Chain Rule	
MCSE-00	3 1 P. ⁻	Г.О.

- (f) Define the following in PROLOG: 4
 (i) Parent (x, y)
 (ii) Grandparent
 (iii) Sibling
 (iv) Both Parents of Sibling
 (g) Write short notes on the following : 6
 (i) Lambda function
 - (ii) Mapping function
 - (h) Compare the following pairs of terms :
 - (i) Hill climbing and BFS
 - (ii) Conceptual graph and Conceptual dependency

5

8

2. (a) It is required to recognize the English alphabetical characters F, E, X, Y, I and T in an image processing system. Define two fuzzy sets I and F to represent the identification of the characters I and F as follows :

 $I = \{ (F, 0.4), (E, 0.3), (X, 0.1), (Y, 0.1), (I, 0.9), (T, 0.8) \}$

 $F = \{ (F, 0.99), (E, 0.8), (X, 0.1), (Y, 0.2), \\ (I, 0.5), (T, 0.5) \}$

Determine the following :

- (i) $I \cup F$
- (ii) $I \cap F$
- (iii) I F
- (iv) $\mathbf{F} \cup \mathbf{F}^{c}$

MCSE-003

2

- (b) Elaborate the following in brief:
 - (i) Knowledge
 - (ii) Intelligence
 - (iii) Inheritance Knowledge
 - (iv) Knowledge Acquisition
 - (v) Knowledge Management
- (c) What is Means-Ends analysis ? Illustrate with an example.
- **3.** (a) Consider the following sentences :
 - John likes all kinds of food.
 - Apples are food.
 - Chicken is food.
 - Anything anyone eats and isn't killed by it, is food.
 - Sue eats everything Bill eats.
 - (i) Translate the sentences into formulae in predicate logic.
 - (ii) Prove that John likes peanuts using backward chaining.
 - (iii) Convert the formulae of part (i) into clause form.
 - (iv) Prove that John likes peanuts using resolution.
 - (v) Use resolution to answer the question,"What food does Sue eat ?"

10

10

2

MCSE-003

3

P.T.O.

- (b) Transform the following into DNF : $P \rightarrow ((Q \land R) \longleftrightarrow S)$
- (c) Represent the following statement in PROLOG:

Mohan eats banana.

- **4.** (a) Express the following statements in propositional logic :
 - (i) Cancer will not be cured unless its cause is determined and a new drug for cancer is found.
 - (ii) If the humidity is high, it will rain either today or tomorrow.
 - (iii) It requires courage and skills to climb a mountain.

(b) Obtain a statement form for the formulae : 6

- (i) $(\exists \mathbf{x}) (\mathbf{A}\mathbf{y}) (\mathbf{A}\mathbf{z}) (\exists \mathbf{u}) (\forall \mathbf{v}) (\exists \mathbf{w})$ P (x, y, z, u, v, w)
- (ii) $(\forall \mathbf{x}) (\exists \mathbf{y}) (\exists \mathbf{z}) ((\sim \mathbf{P} (\mathbf{x}, \mathbf{y}) \land \mathbf{Q} (\mathbf{x}, \mathbf{z})) \lor \mathbf{R} (\mathbf{x}, \mathbf{y}, \mathbf{z}))$
- (c) Explain the concept of planning with state space search using suitable examples.

5

MCSE-003

4

9

5

5

5. (a) Draw the Semantic Net for the following : All penguins are birds. All birds are animals. All mammals are animals. All cats are mammals. Charley is a manx. All manxes are cats. All rexes are cats.

- (b) What do you mean by learning ? Explain with an example.
- (c) A problem-solving search can proceed either forward (from a known state to desired goal state) or backward (from a goal state to start state). What factors determine the choices of direction for a particular problem ?
- (d) Prove that

 $(\mathbf{p} \rightarrow \mathbf{q}) \land (\sim \mathbf{r} \rightarrow \sim \mathbf{q}) \land \sim \mathbf{r} \rightarrow \sim \mathbf{p}$

is a tautology, without using truth table.

MCSE-003

5

7,000

8

2

5

5