MCA (Revised)

Term-End Examination
 June, 2016

MCS-033 : ADVANCED DISCRETE MATHEMATICS

Time: 2 hours
Maximum Marks : 50

Note: Question no. 1 is compulsory. Attempt any three questions from the rest.

1. (a) Is a tree a bipartite graph ? Justify.
(b) Are the following recurrence relations homogeneous or non-homogeneous? Give the order of each.
(i) $x_{n+1}+10 x_{n}+22 x_{n-1}=4$
(ii)

$$
a_{n}=a_{n-1}+a_{n-2}+\ldots+a_{0}
$$

(c) Solve the recurrence relation

$$
4 a_{n}-5 a_{n-1}=0 \text { for } n \geq 1, a_{0}=1 .
$$

(d) Find the generating function for the sequence $1,1,1,0,1,1, \ldots$.3
(e) Let $a_{n}=2^{n}+5\left(3^{n}\right)$ for $n=0,1,2, \ldots$

Show that $a_{n}=5 a_{n-1}-6 a_{n-2}$ for all integers n with $\mathrm{n} \geq 2$.
(f) Find the sum $\sum_{k=1}^{n} k 3^{k} C(n, k)$ by using generating function.
2. (a) Solve $a_{n}=a_{n-1}+n, a_{0}=2$ by Substitution method.
(b) Solve the recurrence relation
$a_{n}-9 a_{n-1}+26 a_{n-2}-24 a_{n-3}=0, n \geq 3$ by characteristic root method.
3. (a) Solve the recurrence relation $a_{n}=3 a_{n-1}+1, a_{0}=1$ by using iterative method.
(b) Draw K_{4} graph. Show that it is planar and 4-colorable.
(c) What do you mean by isomorphic graphs?
4. (a) State Handshaking Theorem.
(b) A non-directed graph G has 8 edges. Find the number of vertices, if the degree of each vertex in G is 2.
(c) Construct a non-Hamiltonian graph on 5 -vertices.
5. (a) Find the number of vertices and number of edges in complete bipartite graph $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$.
(b) Solve the recurrence

$$
a_{n}-4 a_{n-1}=0 \text { by Generating function. } 4
$$

(c) State whether the following graphs are planar or not:
(i)

(ii)

