No. of Printed Pages: 3

MCS-033

MCA (Revised) Term-End Examination June, 2016

MCS-033 : ADVANCED DISCRETE MATHEMATICS

Time : 2 hours

07186

Maximum Marks : 50

- Note: Question no. 1 is compulsory. Attempt any three questions from the rest.
- 1. (a) Is a tree a bipartite graph ? Justify.
 - (b) Are the following recurrence relations homogeneous or non-homogeneous ? Give the order of each.
 - (i) $x_{n+1} + 10x_n + 22x_{n-1} = 4$
 - (ii) $a_n = a_{n-1} + a_{n-2} + \dots + a_0$
 - (c) Solve the recurrence relation $4a_n - 5a_{n-1} = 0$ for $n \ge 1$, $a_0 = 1$. 4
 - (d) Find the generating function for the sequence 1, 1, 1, 0, 1, 1,

MCS-033

P.T.O.

3

3

4

(e) Let $a_n = 2^n + 5 (3^n)$ for n = 0, 1, 2,

Show that $a_n = 5a_{n-1} - 6a_{n-2}$ for all integers n with $n \ge 2$.

3

3

4

4 2

3

4

(f) Find the sum
$$\sum_{k=1}^{n} k 3^k C(n, k)$$
 by using

generating function.

2. (a) Solve
$$a_n = a_{n-1} + n$$
, $a_0 = 2$ by Substitution
method. 5

(b) Solve the recurrence relation

$$a_n - 9a_{n-1} + 26a_{n-2} - 24a_{n-3} = 0, n \ge 3$$

by characteristic root method. 5

3. (a) Solve the recurrence relation
$$a_n = 3a_{n-1} + 1$$
, $a_0 = 1$ by using iterative

method.

(c) What do you mean by isomorphic graphs?

- 4. (a) State Handshaking Theorem. 3
 - (b) A non-directed graph G has 8 edges. Find the number of vertices, if the degree of each vertex in G is 2.
 - (c) Construct a non-Hamiltonian graph on 5-vertices.

MCS-033

2

(a) Find the number of vertices and number of edges in complete bipartite graph $K_{m, n}$.

от 8- - Р- - - <u>т</u>, п.

3

4

3

- (b) Solve the recurrence $a_n - 4a_{n-1} = 0$ by Generating function.
- (c) State whether the following graphs are planar or not :

(i)

(ii)

MCS-033

5.