BACHELOR OF COMPUTER APPLICATIONS （BCA）（Pre－Revised）

Term－End Examination

ロ1アア5 June， 2016

CS－73 ：THEORY OF COMPUTER SCIENCE

Time： 3 hours
Maximum Marks ： 75
Note：Question number 1 is compulsory．Attempt any three questions from the rest．

1．（a）Prove the theorem ：If L is a finite language，then L can be defined by a regular expression．
（b）For the NDFA shown，check whether the input string 0100 is accepted or not．

（c）Construct CFG for the given set 5

$$
\left\{0^{\mathrm{m}, \mathrm{n}} \mid 1 \leq \mathrm{m} \leq \mathrm{n}\right\} .
$$

(d) Discuss about PDA acceptance :
(i) From empty stack to final state
(ii) From final state to empty stack
(e) Is it possible that a Turing Machine could be considered as a computer of functions from integers to integers ? If yes; justify your answer.
(f) (i) Show that $3 n+2=O(n)$.
(ii) Show that $3 n+2=\Omega(n)$.
2. (a) Construct a NFA transition diagram and its equivalent $D F A$ to $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where $Q=\left\{q_{0}, q_{1}\right\}, \Sigma=\{0,1\}, F=\left\{q_{0}\right\}$ and δ is given as :

States	Inputs	
	0	1
q_{0}	$\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$	$\left\{\mathrm{q}_{1}\right\}$
q_{1}	$\left\{\mathrm{q}_{0}\right\}$	$\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$

(b) Prove that if L and M are regular languages, then $L \cap M$ is also a regular language.
3. (a) Given a CFG G $=(\mathrm{N}, \mathrm{T}, \mathrm{P}, \mathrm{S})$ with
$N=\{S\}, T=\{a, b, c\}$ and
$P=\left\{\begin{array}{l}(1) S \rightarrow a S a \\ (2) S \rightarrow b S b \\ (3) S \rightarrow c\end{array}\right\}$.
Obtain the derivation tree and language generated $L(G)$.
(b) Check whether the language given by $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{m}} \mathrm{b}^{\mathrm{m}} \mathrm{c}^{\mathrm{n}}: \mathrm{m} \leq \mathrm{n} \leq 2 \mathrm{~m}\right\}$ is a CFL or not. $\quad 7$
4. (a) Explain the following with examples:
(i) Multi-Tape Turing Machine
(ii) K-dimensional Turing Machine 5
(b) Show that the function $f(x)=x^{2}$ is primitive recursive.
5. (a) Explain any two undecidable problems with respect to Turing Machine.10
(b) Show that the vertex cover problem is NP-complete.

