BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised)

Term-End Examination

BCS-040 : STATISTICAL TECHNIQUES

Time: 2 hours
Maximum Marks : 50
Note :
(i) Attempt both Sections, i.e., Section A and Section B.
(ii) Attempt any four questions from Section A.
(iii) Attempt any three questions from Section B.
(iv) Non-scientific calculator is allowed.

SECTION A

1. The mean and standard deviation of 20 items is found to be 10 and 2 , respectively. At the time of checking it was found that one noted item with value 8 was incorrect. Calculate the mean and standard deviation, if the wrong item is deleted.
2. Let x_{1} and x_{2} be two independent random variables with variances $\operatorname{Var}\left(\mathrm{x}_{1}\right)=\mathrm{k}, \operatorname{Var}\left(\mathrm{x}_{2}\right)=2$. If the variance of $y=3 x_{2}-x_{1}$ is 25 , then find k.
3. (a) State and prove the Addition theorem of probability.
(b) Suppose that A and B are two independent events, associated with a random experiment. The probability of occurrence of event A or B is 0.8 , while the probability of occurrence of event A is 0.5 . Determine the occurrence of probability of event B.
4. (a) What do you understand by a random variable ? Define the types of random variables.
(b) A bag contains 10 white and 3 black balls. Balls are drawn one by one without replacement till all the black balls are drawn. Find the probability that all black balls are drawn by the $6{ }^{\text {th }}$ draw.
5. A survey of 64 medical labs revealed that the mean price charged for a certain test was ₹ 120 , with a standard deviation of ₹ 60 . Test whether the data indicates that the mean price of this test is more than ₹ 100 at 5% level of significance.

SECTION B

6. Describe the following tests in detail :
(a) Paired t-test
(b) Chi-Square test for independence of Attributes
7. Differentiate between any two of the following :
(a) Simple Random Sampling With Replacement and Simple Random Sampling Without Replacement
(b) Probability (Random) Sampling and Non-Random Sampling
(c) One-Sample Test and Two-Sample Test
8. The following table shows the sample values of 3 independent normal random variables. Test whether they have the same mean [use ANOVA]. Given $\mathrm{F}_{0.05}(2,9)=4 \cdot 26$.

| $\mathrm{X}_{1}:$ | 13 | 11 | 16 | 22 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{X}_{2}:$ | 16 | 08 | 21 | 11 |
| $\mathrm{X}_{3}:$ | 15 | 12 | 25 | 10 |

9. (a) Discuss the following :
(i) Control chart for variables
(ii) Control chart for attributes
(b) Describe control chart for $\overline{\mathrm{X}}$ and R in detail. Also suggest when R-chart and S-chart can be used.
