

Total No. of Questions: 90]

[Total No. of Printed Pages: 16

POST GRADUATE DIPLOMA IN CLINICAL CARDIOLOGY (PGDCC)

Term-End Examination June, 2014

MCC-002 : FUNDAMENTALS OF CARDIOVASCULAR SYSTEM-II

Time: 2 Hours]

[Maximum Marks: 60

Note:

- (i) There will be multiple choice type of questions in this examination which are to be answered in *OMR Answer Sheets*.
- (ii) All questions are compulsory.
- (iii) Each question will have four options and only one of them is correct. Answers have to marked in figures in the appropriate rectangular boxes corresponding to what is the correct answer and then blacken the circle for the same number in that column by using HB or lead pencil and not by ball pen *in OMR Answer Sheets*.
- (iv) If any candidate marks more than one option it will be taken as the wrong answer and no marks will be awarded for this.
- (v) There will be 90 questions in this paper and each question carries equal marks.
- (vi) There will be no negative marking for wrong answers.
- (vii) No candidate shall leave the examination hall at least for one hour after the commencement of the examination.

MCC-002 K-2

(1)

Turn Over

- 1. Which of the following statements is wrong?
 - (1) 7.5 to 10 MHz probes are used to examine children
 - (2) As probe frequency increases penetration improves
 - (3) As probe frequency decreases resolution also decreases
 - (4) Low frequency probes are used in obese subjects
- 2. Which of the following is wrong about Pulse wave doppler?
 - (1) Can determine blood flow velocity across valve orifices
 - (2) Cannot measure high velocity flows
 - (3) Can assess diastolic function of ventricles
 - (4) Can estimate pulmonary venous flow
- 3. Which of the following statements about M mode echocardiogram is wrong?
 - (1) Measurements are reliable and reproducible
 - (2) Has high temporal resolution
 - (3) Planimetry of values can be done
 - (4) Can evaluate rapidly moving structures
- **4.** Which of the following statements is **incorrect**?
 - (1) LVOT is well visualised in Parasternal long axis view
 - (2) RVOT is well visualised in Parasternal short axis view
 - (3) Mitral valve orifice and aortic valve orifice areas can be estimated in parasternal long axis view
 - (4) Mitral and tricuspid valve septal insertion is well seen in apical view
- 5. Which of the following is **incorrect** about doppler?
 - (1) Doppler is useful to assess moving targets
 - (2) Doppler shift is a change in frequency between transmitted from reflected sound
 - (3) Sound frequency decreases as the source moves towards the observer
 - (4) Ultrasound beam should be parallel to the direction of movement of the target

(2)

6.	Wh (1) (2) (3) (4)	(2) Depth of sampling influences aliasing(3) Nyquist limit denotes the minimum measurable velocity							
7.		Which of the following is correct regarding continuous wave doppler?							
	(1)	, and the second							
	(2)	Not affected by pulse repetition fr		•					
	(3)	Samples velocity at different leve							
	(4)	Due to Nyquist Phenomenon car	inot m	easure high velocity jets					
8.	Whi	ch of the following is incorrect rega	rding r	normal transvalvular velocities in adults?					
	(1)	LV inflow 0·3–0·5 m/sec	(2)	RV inflow 0·3–0·7 m/sec					
	(3)	LV outlow 1–1·5 m/sec	(4)	RV outflow 0·6–0·9 m/sec					
9.	Whi	ch of the following statements is w							
	(1)	Pulmonary artery diastolic pressure can be determined by measuring the end diastolic velocity of pulmonary regurgitant flow							
	(2)	IVC size correlates to right atrial pressure							
	(3)	Dilated IVC with less than 25% collapse on inspiration denotes Right atrial pressure of 10 mmHg							
	(4)	IVC diameter of less than 2 cm w right atrial pressure of less than 5	ith con mmHç	nplete collapse on inspiration indicates					
10.	Calc	culate the cardiac output in a patier	nt with	the following details :					
		ic annulus area		7 sq. cms.					
	Flow velocity integral of LVOT			10 cms					
	Heart Rate			70/min.					
	(1)	4·5 1/min							
	(2)	4·9 1/min							
	(3)	(3) 5·4 1/min							

(3)

Turn Over

MCC-002 K-2

(4) 5·9 1/min

11.	Whi	ich of the following is incorre	•	normal LV filling?			
	(1)	Deceleration time 160–240	m sec				
	(2)	E/A more than 1					
	(3)	Isovolumetric Relaxation Ti					
	(4)	Mitral A duration is less tha	n PVa durati	on			
12.	12. Which of the following differentiates normal filling from pseudonorma						
	(1)	Deceleration Time					
	(2)	E/A ratio					
	(3)	Pulmonary vein 'a' (PVa) v	elocity				
	(4)	Isovolumetric Relaxation T	ime				
13.	Wh	ich of the following LV segme	ent is not su	pplied by LAD ?			
	(1)	Basal Anterior	(2)	Basal anterior septal			
	(3)	Basal inferior septal	(4)	Mid anterior septal			
14.	Whi	ich of the following LV segme	ent is not su	pplied by posterior descending artery?			
	(1)	Basal inferior septal	(2)	Basal inferior			
	(3)	Mid inferior septal	(4)	Basal lateral			
15.							
	anteroseptal segments, akinesia of mid anterior and mid anteroseptal segments and						
	dyskinesia of apical septal, apical anterior and apical segments are seen. Which is the LV wall motion score index?						
	(1)	1.3	(2)	1.5			
	(3)	1.7	(4)	1.9			
16.	6. False echo drop out in interatrial septum can occur in :						
	(1)	Parasternal long axis view					
	(2) Parasternal short axis view						
	(3) Right parasternal short axis view						
	(4)	Apical 4 chamber view					
MC	C-(002	(4)				
	K-	2					
•							

17.	. The earlier abnormality to occur with prolonged ischaemia:					
	(1)	Impaired relaxation	(2)	E/A more than 1		
	(3)	Impaired contraction	(4)	Pulmonary hypertension	ו	
18.	Whi	ich of the following is wrong regardir	ng pe	ricardial effusion?		
	(1)	Ends posterior to descending aorta				
	(2)	Almost never overlaps LA				
	(3)	IVC will be dilated				
	(4)	Swinging movements of heart pres	ent			
19.	Whi	ch of the following is not a feature of	card	iac tamponade ?		
	(1)	Dilated IVC with less than 50% insp	oirato	ory collapse		
·	(2)	Abnormal ventricular septal movem	ent			
	(3)	RV diastolic collapse				
	(4)	RA collapse in late systole			,	
20.	Whi	ch of the following is indicative of se	vere	mitral stenosis?	,	
	(1)	Pressure half time of more than 220	ms)			
	(2)	Calcifications of mitral leaflet				
	(3)	Resting mean gradient of less than	10 m	ımHg		
	(4)	Mitral valve area of 1.5 sq. cm				
21.	Whi	ch of the following about aortic stend	sis is	wrong?		
	(1)	Mean gradient of less than 20 indica	ates i	noderate stenosis		
	(2)	Orifice area of less than 0.6 by cont	inuity	equation indicates seve	re stenosis	
	(3)	Peak gradient of less than 40 mmH				
	(4)	Peak aortic valve velocity of more th			tenosis	
22.	Whi	ch of the following is not indicative of	of cov	voro aortio roquirgitation 2		
	(1)					
	` ,	Pressure half time of AR jet of more				
	(2)	Holodiastolic flow reversal in desce				
	(3)	Ratio of jet width/LV outflow tract dia				
	(4)	Effective regurgitant orifice area of r	nore	than 0·3 sq. cm		
MC	<u>C-0</u>	002 (5)		Turn Over	
	K-2	2)				

- **23.** Which of the following statements is **wrong**? Right atria is identified by attachment of caval veins (1) Mitral valve has chordal attachment to interventricular septum (2)(3) Left ventricle shows mitral and aortic valve continuity (4) Aorta is recognised by origin of coronary arteries **24.** Which of the following is **incorrect** regarding left ventriculography? (1) Assesses segmental and global LV function (2) Detects ventricular septal defect (3) Done with Cournard catheter (4) Evaluates hypertrophic obstructive cardiomyopathy 25. The following situations have higher risk for pulmonary angiogram except: Pulmonary hypertension (2) Pulmonary embolism (1)(3)Chronic amiodarone use (4) Left bundle branch block **26.** Pulmonary angiogram is useful in evaluation of the following **except**: (1) Pulmonary valvular stenosis (2) Pulmonary artery stenosis (3) Evaluation of hemoptysis (4) Pulmonary arteriovenous communications **27.** In atrial pressure recording which of the following is **correct**: (1) Downward pulling of AV valve causes x descent (2) LA pressure is higher than RA pressure (3) In LA pressure recording 'a' wave is taller than 'v' wave
 - (4) 'v' wave represents systole
- 28. Arterial desaturation is not a feature of :
 - (1) Alveolar hypoventilation
 - (2) Right to left intracardiac shunt
 - (3) Left to right intracardiac shunt
 - (4) Pulmonary AV fistula

(6)

29.		eximetry significant oxygen step u	p occui	rs in atrial level in the	e following except :	
	(1)	Atrial septal defect				
	(2)	Sinus of valsalva aneurysm rupt	_	<u> </u>		
	(3)	Ventricular septal defect with tric	•	•		
	(4)	Coronary artery anomalously ar	ising fro	om pulmonary artery		
30.	. Which of the following statements is wrong regarding QP/QS ratio?					
	(1)	Less than 1.5 can be managed	medica	ally		
	(2)	1.5–2 requires surgical correction	n			
	(3)	Less than 1 indicates irreversible defect	pulmor	nary vascular disease	in ventricular septal	
٠	(4) Less than 1 occurs in right to left intracardiac shunts					
31.	Cor	onary angiogram is not indicated	in the f	following conditions	except :	
	(1) as a screening test for coronary artery disease					
	(2) normal coronary angiogram within past 5 years					
	(3) recurrent angina within one year of coronary artery bypass surgery					
	(4)	patients who do not prefer revas	cularis	ation		
32.	Which of the following is wrong?					
	(1) Normal coronary bed has flow reserve of 3-4 times					
	(2) 50% diameter stenosis reduces crosssectional area by 70%					
	(3)	(3) 70% diameter stenosis causes 99% reduction in crossectional area				
	(4)	A stenosis which reduces lumen	diamete	er by 50% is hemodyr	namically significant	
33.	Whi	ch of the following is not consider	red as	complex coronary ar	ngioplasty?	
	(1)	bifurcation lesion	(2)	discrete proximal L	_AD lesion	
	(3)	chronic total occlusion	(4)	multivessel stenos	is	
34.	In W	/ilkins echocardiographic scoring	system	of mitral valve, whic	h of the following is	
	(1)	maximum possible score is 16				
	(2) minimum score is 0					
	(3) does not include commissural calcification					
	(4)	score of less than 8 is acceptable	e for ba	alloon valvuloplasty		
MC	C-(002	7)		Turn Over	
	K-	2				

 35. Right heart study was done in a patient, who had acute myocardial infarction days ago, Oximetry showed pulmonary artery saturation of 85%. What is the cause? (1) Acquired ventricular septal defect (2) Papillary muscle rupture (3) Pulmonary embolism (4) Cardiac tamponade 				
 36. Severity of Mitral regurgitation by LV angiogram is estimated by: (1) left ventricular dysfunction (2) reflux of contrast in to pulmonary vein (3) presence of contrast in LA (4) density of contrast opafication between the left atrium and left ventricle 				
 37. Which of the following is not correct for balloon aortic valvuloplasty? (1) can be performed in children below 10 years (2) indicated for peak systolic pressure gradient at rest of more than 65 mml. (3) to be done in low cardiac output regardless of the gradient (4) balloon diameter should be 10% more than the aortic annulus 	lg			
 38. The following agents can be used for pharmacological stress except: (1) Adenosine (2) Dipyridamole (3) Dobutamine (4) Digoxin 				
 39. Bernoulli's equation is used to calculate: (1) extent of valvular regurgitation (2) cardiac output (3) cardiac reserve (4) pressure gradient across stenctic valve 				
 Which of the following is incorrect regarding echocardiographic equipment? (1) Frame rate falls as sector width increases (2) Frame rate decreases a sector depth increases (3) Sector width and sector depth can be altered independently (4) Frame rate is independent of sector width and depth 				
MCC-002 (8)				

- 41. Which of the following regarding perfusion scan is incorrect?
 - (1) 99 m Technetium can be easily generated onsite
 - (2) Gamma ray emitted by Technetium is optimal for gamma camera imaging
 - (3) half-life of Technetium is many times longer than that of Thallium 201
 - (4) Imaging time of Technetium is shorter because of higher dose of tracer administered
- 42. Which of the following is incorrect regarding perfusion scan?
 - (1) reversible defect indicates ischaemia
 - (2) myocardial infarct causes fixed defects
 - (3) normally stress and rest images will not be identical
 - (4) Gated SPECT can assess viability of a region of myocardium
- 43. Which of the following is incorrect about hibernating myocardium?
 - (1) it is a dysfunctional but viable myocardium
 - (2) function is reversible with revascularisation
 - (3) in a GSPECT scan apppears to thicken during systole
 - (4) PET scan will show decreased metabolism with poor perfusion in hibernating myocardium
- **44.** Myocardial perfusion imaging with pharmacological stress is indicated for the following **except**:
 - (1) Severe aortic stenosis
 - (2) Left bundle branch block
 - (3) Peripheral arterial disease
 - (4) Orthopedic problem preventing exercise
- 45. In successful revascularisation, GSPECT scan in a post CABG patient will show:
 - (1) increase in left ventricular ejection fraction
 - (2) decrease in end systolic volume
 - (3) improve regional contractile function
 - (4) all of these

MCC-002

(9)

Turn Over

46.	. Which of the following is incorrect about Echocardiography?				
	(1) Helps to characterise cardiac masses				
	(2) Not useful to assess viable myocardium				
	(3) Useful to evaluate valvular disease				
	(4) Helpful to detect complications of myocardial infarction				
47.	Which of the following is correct about continuous wave doppler?				
	(1) Continuous wave doppler is limited by Nyquist limit				
	(2) Has ability to sample at different depths				
	(3) Useful to measure high velocity flows				
	(4) Has single large doppler crystals which transmits and receives ultrasound waves				
48.	Which of the following about 2D Echocardiography is incorrect?				
	(1) Useful to assess valve morphology and orifice area				
	(2) Can provide hemodynamic information about blood flow				
	(3) Helps to estimate cardiac size and function				
	(4) Most useful for pericardial diseases				
49.	Which of the following is incorrect?				
	(1) Interatrial septum is well visualised in right parasternal view				
	(2) Right sided aortic arch is detected in suprasternal view				
	(3) Viscero atrial situs is seen in subcostal view				
	(4) In hyperinflated lungs parasternal long axis view is better than in Apical 4 chamber view				
50.	Which of the following is incorrect in spectral analysis of doppler?				
	(1) Indicates the direction of flow at different points of cardiac cycle				
	(2) Estimates velocity at different points of cardiac cycle				
	(3) Amplitude is inversely proportional to the intensity of signal				
	(4) Flow velocity integral can be calculated				
51.	Which of the following functions cannot be done by Pulse Wave Doppler?				
	(1) Mitral inflow velocity (2) Pulmonary vein velocity				
	(3) dp/dt (4) Mitral annulus velocity				
MC	C-002 (10)				
	K-2				

52. Which of the following cannot be measured by continuous wave doppler? (1) Dynamic LVOT gradient (2) Pressure half time (3) Jet across Ventricular septal defect (4) Diastolic function 53. Which of the following statements is wrong? Simplified Bernoulli's Equation is used to assess transvalvular gradients Pressure half time is useful to assess the mitral stenosis and aortic regurgitation (2)(3) Aortic valve area is better assessed by continuity equation if there is LV dysfunction Tricuspid regurgitant jet helps to estimate pulmonary artery diastolic pressure (4) 54. In a patient with Ventricular septal defect, the peak velocity of jet across the defect was 4m/sec. His brachial blood pressure was 110/80 mmHg. Pulmonary valve is normal and not stenosed. His Pulmonary artery systolic pressure is : (1) 36 mmHa 46 mmHa (3) 54 mmHg (4) 64 mmHa 55. Which of the following is wrong: (1) E/A ratio of less than 1 occurs in impaired LV relaxation Normally pulmonary venous systolic filling wave velocity is greater than diastolic filling wave velocity Deceleration time of less than 160 milliseconds occurs in restrictive pattern of filling In pseudonormal pattern, the mitral valve 'a' wave duration is greater than pulmonary venous 'a' wave duration. 56. Which of the following is incorrect regarding impaired relaxation pattern in LV filling? (1) Deceleration Time: 160-240 m sec (2) E/A less than 1 Isovolumetric relaxation Time: more than 90 m sec (3)Pulmonary venous systolic wave velocity greater than diastolic wave velocity 57. Which of the following is incorrect regarding restrictive filling pattern of LV filling? (1) Deceleration time less than 160 m sec (2) E/A > 1.5(3) PV systolic wave velocity (Pvs2) is greater than diastolic velocity (PVd) (4) Mitral A duration is less than pulmonary vein a (PVa) duration MCC-002 (11) Turn Over

58.	Which of the following LV segments is not supplied by left circumflex artery?			
	(1)	Basal anterior lateral	(2) (4)	Mid anterior lateral Apical anterior
	(3)	Apical lateral	(4)	Apidar antonor
59.	Whic	ch of the following LV segments is s	upplie	
	(1)	Basal inferior septal	(2)	Mid inferior septal
	(3)	Apical septal	(4)	Apical lateral
60.	cont	17 segment LV wall motion analysi al, mid inferior and mid inferior septa apical segments were noted. What	l sear	
	(1)	1.3	(2)	1.8
	(3)	2·1	(4)	2·4
61.	\/\/hi	ch of the following is incorrect rega	rding	pulmonary venous flow pattern?
0	(1)	One systolic velocity	(2)	Atrial flow reversal
	(3)	One diastolic velocity	(4)	Done by pulse wave doppler
62.	\/\/hi	ch of the following is correct regard	lina tr	ue ventricular aneurysm ?
02.	(1)	Narrow neck	3	·
	(2)	Commonly due to inferior wall infa	rction	
	(3)	Source of thrombus		
	(4)	Walled off by pericardium		
63.	Whi	ich of the following is incorrect repairs arteries?	egard	ing echocardiographic visualisation of
	(1)	Visualised in small portions in diffe	erent	phases of cardiac cycle
	(2)	Left main ostium is visualised in pa	araste	rnal short axis view at aortic valve level
	(3)	Circumflex in AV groove can be v		
	(4)	Transthoracic echo visualises bet		
64.	Res	spiratory variation of more than 25%	6 in tı	rans mitral flow velocity occur in all the
0	following except:			
	(1)	Pulmonary embolism		
	(2)	Constrictive pericarditis		
	(3)	Restrictive cardiomyopathy		
	(4)	Chronic obstructive pulmonary dis	sease	
M	CC-	002 (1	2)	
	K-	.2		

- 65. Which of the following statements about mitral stenosis is wrong?
 - (1) Transthoracic echocardiography is insensitive for detecting LA thrombi
 - (2) Mitral regurgitation more than mild degree precludes balloon valvuloplasty
 - (3) RV failure is an indication for invasive intervention
 - (4) Severe aortic regurgitation prolongs mitral pressure half time
- 66. Which of the following is not indicative of severe mitral regurgitation?
 - (1) Effective regurgitant orifice of >4 sq. cm
 - (2) Pulmonary vein systolic flow reversal
 - (3) Vene contraction of 3 mm of MR jet
 - (4) MR jet area of more than 8 sq. cm
- 67. Which of the following is incorrect?
 - (1) Mean tricuspid gradient of more than 2.5 mm Hg indicates tricuspid stenosis
 - (2) Pressure half time of tricuspid valve of more than 190 m sec indicates severe stenosis
 - (3) Commonest cause is congenital heart disease
 - (4) In severe tricuspid regurgitation, systolic flow reversal occurs in hepatic vein
- **68.** Which of the following statements is wrong?
 - (1) The great artery which immediately branches is pulmonary artery
 - (2) Right ventricle is recognised by moderator band
 - (3) Mitral septal attachment is more towards apex than tricuspid
 - (4) Coronary sinus opening indicates right atrium
- 69. Which of the following is incorrect regarding left ventriculography?
 - (1) Done with pigtail catheter
 - (2) Field of view is 9 inches
 - (3) Done in 30° LAO and 60° RAO
 - (4) Pressure cut off of 1,000 PSI
- 70. In pulmonary angiogram, incorrect statement is:
 - (1) Contrast medium with high osmolarity is preferred
 - (2) Digital subtraction reduces quantity of contrast
 - (3) Visualised in right and left posterior oblique views
 - (4) Balloon occlusion is useful for segmental angiogram

MCC-002 K-2

(13)

Turn Over

71. In right atrial pressure wave recording; which of the following is **incorrect**? (1) 'a' wave occurs during systole (2) 'a' wave follows P wave in ECG (3) atrial relaxation causes 'x' descent (4) 'y' descent follows AV valve opening **72.** Which of the following is **correct**? (1) RV and LV waveforms are similar in morphology and magnitude (2) Ejection period is shorter in LV than in RV (3) Duration of systole is longer in LV than in RV (4) Presence of incisura helps to recognise aortic pressure from PA pressure **73.** Pulmonary artery saturation of more than 80% occurs in: (1) Left of right intracardiac shunt (2) Pulmonary hypertension (3) AV fistula (4) Angioma of lung 74. In oximetry significant oxygen step up occurs at Pulmonary artery level in the following conditions except: (1) Patent ductus arteriosus (2) Anomalous origin of coronary artery (3) Complete endocardial cushion defect (4) Aorto pulmonary window 75. The following are class 1 indications for coronary angiogram except: (1) Class III or Class IV exertional angina inspite of adequate medical therapy (2) Resuscitated from sudden cardiac death (3) Acute stent closure following PCI (4) Coronary calcifications in CT coronary angiogram **76.** Which of the following statements about coronary circulation is **wrong?** (1) 85% of patients have right dominant circulation (2) In balanced codominant circulation, posterior left ventricular branches are given by RCA (3) The artery which crosses the crux is considered as dominant artery (4) SA nodal artery arises either from RCA or from left circumflex artery

MCC-002 (14)

77	. Wi	nich of the following statements	s al	oout	t the	e stent is wrona ?
	(1)		and	able	e ste	ents
	(2)					
	(3)					
	(4)	Self expandable stents can	be	ball	oon	inflated if required
78.	. Wh	nen in LV angiogram, LA opacificontrast, the grade of MR is:	icat	tion	is ed	qual to that of LV without quick clearance
	(1)				. (0)	
	(3)				(2)	
	(3)	2+			(4)	1+
79.		ich of the following catheter nitoring?	rs c	can	be	used for pulmonary wedge pressure
	(1)	Swan Ganz			(2)	Pigtail
-	(3)	Sones catheter			(4)	Lehman catheter
80.	Wr pati	nich of the following is not a co	ontr	aind	dica	ation for mitral balloon valvuloplasty in a
	(1)	Left atrial body clot			(2)	Mild mitral regurgitation
	(3)	Mitral commissural calcificati	on		(4)	
81.	Whi	ch of the following estimation o	can	not	me	easure cardiac output ?
	(1)	Thermodilution				
	(2)	FICK method				
•	(3)	Doppler estimation of left ven	itric	ular	out	tflow
	(4)	Transmitral pressure gradient				
82.	The	following radio pharmaceutical	s a	re u:	sed	for myocardial perfusion study except :
	(1)	18 FDG (Fluro deoxyglucose))		(2)	Tetrofosmin
	(3)	Thallium (Tl ₂₀₁)	,		(4)	99 m Tc-Sestamibi
83.	Nucl	ear cardiology is used in the fo	ollo	wine	a co	onditions except :
	(1)	Diagnosis and prognosis of co				
	(2)	Myocardial viability		· · • · · ·	· • • • • • • • • • • • • • • • • • • •	iory diodago
	(3)	Constrictive pericarditis				
	(4)	To image the extent of infarction	on			· ·
MC	C-0	02	(15)	Turn Over
	K_2					

