MASTER OF ARTS (ECONOMICS)

Term-End Examination

June, 2014
02352

MECE-001 : ECONOMETRIC METHODS

Time: 3 hours
Maximum Marks : 100
Note: Answer any two questions from Section A and any five questions from Section B.

SECTION A

1. The relationship between variables Y and X is linear i.e. $Y=\alpha+\beta X+\varepsilon$. Assume, however, that the classical homoscedasticity assumption is violated. Specifically, for the first n_{1} observations, the variance of the error term ε is 1 , whereas for the remaining n_{2} observations, the variance of the error term ε is 4 .
(a) What problems arise if you estimate α and β by OLS ?
(b) How would you estimate α and β by generalized least squares?
2. The relationship between 2 variables, Y and X, is as follows:
$\mathrm{Y}=\alpha+\beta \mathrm{X}+\varepsilon$. Your data set consists of 6 observations and is as follows :

Y	4	2	0	3	2	1
X	1	1	1	2	2	2

(a) Using OLS regression, obtain estimates of α and β.
(b) What is the coefficient of determination (i.e. R^{2}) of your regression?
3. Assume that the true model in deviation form is $y_{i}=\beta x_{i}+\varepsilon_{i}$ and let the variance of ε_{i} be σ^{2}. Assume that the variable y^{*}, instead of y , is obtained in the measurement process, where $y_{i}^{*}=y_{i}+v_{i}$. Assume that the variance of v_{i} is σ_{v}^{2} and $\operatorname{Cov}\left(v_{i}, x_{i}\right)=0$. You run a regression with y^{*} as the dependent variable and x as the independent variable. Let $\hat{\beta}$ be the OLS estimator of β.
(a) Is $\hat{\beta}$ an unbiased estimator of β ? Provide a proof for your answer.
(b) Show that the variance of $\hat{\beta}$ is increasing in σ_{v}^{2}, the variance of the measurement error.
4. Let the dependent variable Y_{i} assume two values : 0 and 1 . Let x_{i} denote the set of independent variables, some of which may be continuous. Assume that you build a linear probability model to study the impact of x_{i} on Y_{i} - i.e., $Y_{i}=x_{i} \beta+\varepsilon_{i}$, where ε_{i} is normalized to have zero mean.
(a) Show that for each x_{i}, the error term ε_{i} can take just two values.
(b) Show that $\operatorname{Var}\left(\varepsilon_{i} \mid x_{i}\right)$, the variance of ε_{i} given x_{i}, is equal to $x_{i} \beta\left(1-x_{i} \beta\right)$.
(c) In the model, why is the probability that $Y_{i}=1$ given x_{i} not constrained to lie in the interval $[0,1]$?

SECTION B

5. On the basis of n observations, let the statistic $\hat{\theta}$ be as follows : $\hat{\theta}=\theta$ with probability $1-1 / n^{2}$ and $\hat{\theta}=2$ with probability $1 / \mathrm{n}^{2}$.
(a) Is the statistic consistent?
(b) Is the statistic unbiased ?
(c) Is the statistic asymptotically unbiased?
6. The relationship between variables Y and X is linear - i.e. $\mathrm{Y}=\alpha+\beta \mathrm{X}+\varepsilon$.
(a) State all the classical assumptions for ordinary least squares (OLS).
(b) Let $\hat{\beta}$ denote the OLS estimator of β. Show that all the classical assumptions are not required to demonstrate that $\hat{\beta}$ is an unbiased estimator (i.e. $\mathrm{E}(\hat{\beta})=\beta$).
7. The relationship between variables Y, X_{1} and X_{2} is linear - i.e. $Y=\alpha+\beta_{1} X_{1}+\beta_{2} X_{2}+\varepsilon$.
(a) Let $\hat{\beta}_{1}$ be the OLS estimator of β_{1}. If the correlation coefficient between X_{1} and X_{2} is increased (holding fixed the variances of X_{1}, X_{2} and ε), does the variance of β_{1} increase or decrease? Discuss.
(b) In the context of this question, outline how you would use Klien's method to determine whether multicollinearity is a problem.
8. Suppose that you have time series data for two variables, X and Y . Your model is as follows : $Y_{t}=\beta_{1}+\beta_{2} X_{t}+u_{t}, t=1,2, \ldots, T ; u_{t}=\rho u_{t-1}+\varepsilon_{t}$, where ε_{t} is i.i.d. normal with mean 0 and variance σ^{2}.
(a) Show how you will use the Breusch-Godfrey test to detect autocorrelation in the error term, u_{t}. Remember to specify the distribution of the test statistic under the null hypothesis of no autocorrelation.
(b) Assuming that u_{t} is autocorrelated, show how you would use the Cochrane-Orcutt method to estimate β_{1} and β_{2} after correcting for autocorrelation of u_{t}.

12
9. Consider the following distributed lag model : $Y_{t}=\beta_{0} X_{t}+\beta_{1} X_{t-1}+\beta_{2} X_{t-2}+u_{t}$, where u_{t} has mean 0 and is independent of the regressors.
(a) What is the short-run multiplier - i.e. the immediate response of Y_{t} to a unit change in X_{t} ?
(b) What is the long-run effect - i.e. equilibrium multiplier - of a unit change in X_{t} ?
(c) Will an OLS regression provide an unbiased estimator of the model's parameters?
10. You have time series data for two variables : Y_{t} and X_{t}. The model that applies for the first T_{1} periods is as follows :
$Y_{t}=\alpha+\beta X_{t}+\rho X_{t}^{2}+u_{t}, t=1,2, \ldots, T_{1}$.
For the remaining T_{2} periods, the model that applies is as follows:
$Y_{t}=\alpha+\beta X_{t}+\theta X_{t}^{3}+u_{t}, t=T_{1}+1, \ldots, T_{1}+T_{2}$.
(a) Using the dummy variable approach, show how the two models can be combined into a single model that applies for all the $\mathrm{T}_{1}+\mathrm{T}_{2}$ periods.
(b) How would you test the hypothesis that $P=\theta$? Specify the distribution of the test statistic under the null.
11. Consider the following simple model of a market where Q_{S} denotes the quantity supplied, Q_{d} denotes the quantity demanded, and P is price.

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{d}}=\alpha_{1}+\beta_{1} P+\gamma_{1} z_{1}+\gamma_{2} z_{2}+u_{1} \\
& \mathrm{Q}_{\mathrm{S}}=\alpha_{2}+\beta_{2} P+u_{2} \\
& \mathrm{Q}_{\mathrm{d}}=\mathrm{Q}_{\mathrm{S}}(\equiv \mathrm{Q})
\end{aligned}
$$

(a) Write down the reduced form equation for P.
(b) Can the parameters of the reduced form equation derived above be consistently estimated by OLS ? Explain.

एम.ई.सी.ई.-001

एम.ए. (अर्थशास्त्र)
सत्रांत परीक्षा
जून, 2014

एम.ई.सी.ई.-001 : अर्थमिति विधियाँ

समय : 3 घण्टे
अधिकतम अंक : 100

भाग क

1. Y और X चरों के बीच का सम्बन्ध रैखिक अर्थात् $\mathrm{Y}=\alpha+\beta \mathrm{X}+\varepsilon$ है । मान लीजिए, हालाँकि क्लासिकी समविचालिता अभिधारणा का पालन नहीं किया गया है । विशेष रूप से प्रथम n_{1} प्रेक्षणों के लिए, त्रुटि चर ε का प्रसरण 1 है, जबकि शेष n_{2} प्रेक्षणों के लिए त्रुटि चर ε का प्रसरण 4 है।
(क) यदि आप α और β को ओ.एल.एस. (OLS) द्वारा आकलित करते हैं, तो क्या समस्याएँ उत्पन्न होंगी ?
(ख) आप α और β को व्यापकीकृत न्यूनतम वर्ग (GLS) से कैसे आकलित करेंगे ?
2. 2 चरों, अर्थात् Y तथा X के बीच का सम्बन्ध इस प्रकार है : $\mathrm{Y}=\alpha+\beta \mathrm{X}+\varepsilon$. आपके आँकड़े सेट में सम्मिलित 6 प्रेक्षण इस प्रकार है :

Y	4	2	0	3	2	1
X	1	1	1	2	2	2

(क) ओ.एल.एस. समाश्रयण का प्रयोग करते हुए, α और β के आकलन प्राप्त कीजिए ।
(ख) आपके समाश्रयण का निर्धारण गुणांक (अर्थात् R^{2}) क्या है ?
3. मान लीजिए कि विचलन रूप में सही मॉडल है, $\mathrm{y}_{\mathrm{i}}=\beta \mathrm{x}_{\mathrm{i}}+\varepsilon_{\mathrm{i}}$ और मान लीजिए कि ε_{i} का प्रसरण σ^{2} है । मान लीजिए कि y की बजाय, चर y^{*} की प्राप्ति मापन प्रक्रिया में की जाती है, जहाँ $y_{i}^{*}=y_{i}+v_{i}$ है । मान लीजिए कि v_{i} का प्रसरण σ_{v}^{2} और $\operatorname{Cov}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}\right)=0$ है । आप पराश्रित चर के रूप में y^{*} और स्वतंत्र चर के रूप में x के साथ समाश्रयण कीजिए । मान लीजिए कि β का ओ.एल.एस. आकलक $\hat{\beta}$ है।
(क) क्या $\hat{\beta}, \beta$ का अनभिनत आकलक है ? अपने उत्तर का प्रमाण दीजिए।
(ख) दर्शाइए कि $\hat{\beta}$ का प्रसरण, मापन न्रुटि के प्रसरण σ_{v}^{2}, में वर्धमान है।
4. मान लीजिए कि पराश्रित चर Y_{i} के दो मान हैं : 0 और 1 । मान लीजिए कि x_{i} स्वतंत्र चरों के सेट को दर्शाता है जिनमें से कुछ सतत् हो सकते हैं। मान लीजिए कि आप Y_{i} पर x_{i} के प्रभाव अर्थात् $Y_{i}=x_{i} \beta+\varepsilon_{i}$, का अध्ययन करने के लिए रैखिक प्रायिकता मॉडल (LPM) बनाते हैं, जहाँ ε_{i} को शून्य माध्य की प्राप्ति के लिए प्रसामान्यीकृत किया जाता है ।
(क) दर्शाइए कि प्रत्येक x_{i} के लिए त्रुटि चर ε_{i} मात्र दो मान ले सकता है।
(ख) दर्शाइए कि प्रसरण $\left(\varepsilon_{i} \mid \mathrm{x}_{\mathrm{i}}\right), \varepsilon_{\mathrm{i}}$ आधारित x_{i} का प्रसरण, $\mathrm{x}_{\mathrm{i}} \beta\left(1-\mathrm{x}_{\mathrm{i}} \beta\right)$, के समतुल्य है।
(ग) मॉडल में, ऐसी प्रायिकता क्यों है कि $\mathrm{Y}_{\mathrm{i}}=1$ आधारित x_{i}, अंतराल $[0,1]$ में निहित रहने के लिए अवरुद्ध क्यों नहीं है ?

भाग ख

5. n प्रेक्षणों के आधार पर, मान लीजिए कि प्रतिदर्शज $\hat{\theta}$ इस प्रकार है : $\hat{\theta}=\theta$ जहाँ प्रायिकता $1-1 / \mathrm{n}^{2}$ है और $\hat{\theta}=2$ जहाँ प्रायिकता $1 / \mathrm{n}^{2}$ है।
(क) क्या प्रतिदर्शज संगत है ?
(ख) क्या प्रतिदर्शज अनभिनत है ?
(ग) क्या प्रतिदर्शज उपगामित: रूप से अनभिनत है ?
6. चर Y और X के बीच का सम्बन्ध रैखिक - अर्थात् $\mathrm{Y}=\alpha+\beta \mathrm{X}+\varepsilon$ है।
(क) सामान्य न्यूनतम वर्ग (ओ.एल.एस.) की सभी क्लासिकी अभिधारणाओं को व्यक्त कीजिए।
(ख) मान लीजिए कि $\hat{\beta}, \beta$ के ओ.एल.एस. आकलक को दर्शाता है। दर्शाइए कि अनभिनत आकलक (अर्थात् $E(\hat{\beta})=\beta$) प्रमाण करने के लिए सभी क्लासिकी अभिधारणाओं की आवश्यकता नहीं पड़ती।
7. चर $\mathrm{Y}, \mathrm{X}_{1}$ और X_{2} के बीच का सम्बन्ध रैखिक - अर्थात् $\mathrm{Y}=\alpha+\beta_{1} \mathrm{X}_{1}+\beta_{2} \mathrm{X}_{2}+\varepsilon$ है।
(क) मान लीजिए कि $\hat{\beta}_{1}, \beta_{1}$ का ओ.एस.एस. आकलक है । यदि X_{1} और X_{2} के बीच सहसंबंध गुणांक को बढ़ा दिया जाए, $\mathrm{X}_{1}, \mathrm{X}_{2}$ और ε के प्रसरणों को स्थिर (fixed) रखते हुए, क्या $\hat{\beta}_{1}$ का प्रसरण बढ़ता है या घटता है ? चर्चा कीजिए।
(ख) इस प्रश्न के संदर्भ में, यह निर्धारण करने के लिए कि क्या बहुसरेखता एक समस्या है या नहीं, क्लाइन (Klien) विधि का प्रयोग आप कैसे करेंगे ? संक्षेप में बताइए।
8. मान लीजिए कि दो चरों, X तथा Y के लिए आपके पास काल श्रृंखला आँकड़े हैं । आपका मॉडल इस प्रकार है : $\mathrm{Y}_{\mathrm{t}}=\beta_{1}+\beta_{2} \mathrm{X}_{\mathrm{t}}+\mathrm{u}_{\mathrm{t}}, \mathrm{t}=1,2, \ldots, \mathrm{~T} ; \mathrm{u}_{\mathrm{t}}=\rho \mathrm{u}_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}}$, जहाँ ε_{t}, i.i.d. है, माध्य 0 और प्रसरण σ^{2} के साथ सामान्य ।
(क) दर्शाइए कि ब्रुश-गॉडफ्रे (Breusch-Godfrey) परीक्षण का प्रयोग, आप त्रुटि चर u_{t} में स्वसहसम्बन्ध का पता लगाने के लिए कैसे करेंगे । स्वसहसम्बन्ध न होने की शून्य परिकल्पना के अंतर्गत परीक्षण प्रतिदर्शज बंटन को विशेष रूप से दर्शाना याद रखें।
(ख) मान लीजिए कि u_{t} स्वसहसम्बन्धित है । दर्शाइए कि आप u_{t} के स्वसहसम्बन्ध को ठीक करने की बात को ध्यान में रखते हुए β_{1} और β_{2} के आकलन के लिए कोच्रेन-ऑरकट (Cochrane-Orcutt) विधि का प्रयोग कैसे करेंगे ।
9. निम्नलिखित बंटित पश्चता मॉडल पर विचार कीजिए :

$$
Y_{t}=\beta_{0} X_{t}+\beta_{1} X_{t-1}+\beta_{2} X_{t-2}+u_{t}
$$

जहाँ u_{t} का माध्य 0 और जो समशश्रयियों से स्वतंत्र है ।
(क) अल्पकालिक गुणक - अर्थात् X_{t} में यूनिट परिवर्तन के प्रति Y_{t} की तात्कालिक प्रतिक्रिया क्या है ?
(ख) दीर्घकालिक प्रभाव - अर्थात् X_{t} में यूनिट परिवर्तन का साम्य गुणक क्या है ?
(ग) क्यां ओ.एल.एस. प्रणाली समाश्रयण मॉडल के प्राचलों का अनभिनत आकलक प्रदान करेगी ?
10. आपके पास दो चरों : Y_{t} और X_{t} के लिए काल शृंखला आँकड़े हैं। प्रथम T_{1} कालों के लिए लागू मॉडल इस प्रकार है :

$$
Y_{t}=\alpha+\beta X_{t}+\rho X_{t}^{2}+u_{t}, t=1,2, \ldots, T_{1}
$$

शेष T_{2} कालों (समयावधियों) के लिए लागू मॉडल इस प्रकार है :
$\mathrm{Y}_{\mathrm{t}}=\alpha+\beta \mathrm{X}_{\mathrm{t}}+\theta \mathrm{X}_{\mathrm{t}}^{3}+\mathrm{u}_{\mathrm{t}}, \mathrm{t}=\mathrm{T}_{1}+1, \ldots, \mathrm{~T}_{1}+\mathrm{T}_{2}$.
(क) मूक चर उपागम के प्रयोग से, दर्शाइए कि सभी $\mathrm{T}_{1}+\mathrm{T}_{2}$ कालों पर लागू किए जाने वाले एकल मॉडल में दो मॉडलों को आपस में जोड़कर कैसे सम्मिलित किया जा सकता है ।
(ख) आप इस परिकल्पना का परीक्षण कैसे करेंगे कि $P=\theta$? परीक्षण प्रतिदर्शज बंटन को शून्य परिकल्पना के अंतर्गत विशेष रूप से दर्शाइए।
11. बाज़ार के निम्नलिखित साधारण मॉडल पर विचार कीजिए जहाँ Q_{s}, आपूर्तित परिमात्रा को और Q_{d}, माँग की गई परिमात्रा को दर्शाता है और जहाँ P, मूल्य है।

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{d}}=\alpha_{1}+\beta_{1} P+\gamma_{1} \mathrm{z}_{1}+\gamma_{2} z_{2}+u_{1} \\
& \mathrm{Q}_{\mathrm{S}}=\alpha_{2}+\beta_{2} \mathrm{P}+\mathrm{u}_{2} \\
& \mathrm{Q}_{\mathrm{d}}=\mathrm{Q}_{\mathrm{s}}(\equiv \mathrm{Q})
\end{aligned}
$$

(क) P के लिए परिसीमित स्वरूप समीकरण को लिखिए।
(ख) क्या ऊपर, व्युत्पन्न परिसीमित स्वरूप समीकरण के प्राचलों को सुसंगत रूप से ओ.एल.एस. द्वारा आकलित किया जा सकता है ? वर्णन कीजिए।

