BACHELOR'S DEGREE PROGRAMME (BDP)
 Term-End Examination June, 2014

BECE-015 : ELEMENTARY MATHEMATICAL METHODS IN ECONOMICS

Time: 3 hours
Maximum Marks : 100
Note: Answer the questions as per the instructions given in each section.

SECTION A.
Answer any two questions from this section.
$2 \times 20=40$

1. Maximise

$$
\int_{0}^{T}-\left(t^{2}+u^{2}\right) d t
$$

subject to $\frac{d y}{d t}=u$ and $y(0)=4, y(T)=5$.
Here y is a state variable.
2. Consider the following market model :

$$
\begin{aligned}
& Q_{d t}=\alpha-\beta P_{t}(\alpha, \beta>0) \\
& Q_{s t}=-\gamma+\delta P_{t}(\gamma, \delta>0) \\
& P_{t+1}=P_{t}-\sigma\left(Q_{s t}-Q_{d t}\right)(\sigma>0)
\end{aligned}
$$

Here σ denotes the stock-induced price-adjustment coefficient. Describe the time path of the price variable.
3. Consider a situation where a factory shuts down and 1200 people become unemployed and now begin a job search. Here we have two states : employed and unemployed, with an initial vector $[\mathrm{E}, \mathrm{U}]=[0,1200]$. Suppose in any given period an unemployed person will find a job with probability 0.7 . Also, persons who find themselves employed in any given period may lose their job with probability of $0 \cdot 1$.
(i) Set up the Markov transition matrix for this problem.
(ii) What will be the number of unemployed persons after 3 periods and after 5 periods?
(iii) What is the steady-state level of unemployment?
4. Explain, with derivations, Roy's identity and Shephard's lemma.

SECTION B

Answer any three questions from this section. $\quad 3 \times 12=36$
5. A consumer has a utility function $\mathbf{u}=(\mathbf{x} \cdot \mathbf{y})$ where x and y are the goods consumed. The prices of the goods are p_{x} and p_{y} respectively and the consumer's income is M. Furthermore, the consumer has an allotment of coupons, denoted by C, which can be used to purchase either x or y at a coupon price of C_{x} and C_{y}. Set up the Lagrangian for this problem and write the Kuhn - Tucker conditions.
6. Solve the following game using backward induction :

(A, B, C, D, E, F are the moves and 1 and 2 are the players)
7. Discuss the method of dynamic programming as a technique to solve dynamic optimisation problems.
8. Construct the average and marginal product functions for x_{1} which correspond to the production function $q=x_{1} x_{2}-0.2 x_{1}^{2}-0.8 x_{2}^{2}$. Let $x_{2}=10$. At what respective values of x_{1} will the average product and marginal product of x_{1} equal zero?
9. Given the Cobb - Douglas production function $Q=A K^{\alpha} L^{\beta}$, show that α and β are the partial elasticities of output with respect to the capital and labour inputs.

SECTION C

Answer any three questions from this section. $\quad 3 \times 8=24$
10. Let output Q be a function of three inputs L, K, N and the production function be $Q=A K^{a} L^{b} N^{c}$.
(a) Is this function homogeneous? If so, of what degree?
(b) Find the share of product for input N, if it is paid by the amount of its marginal product.
11. (a) Given the marginal revenue function $R^{\prime}(q)=28 q-e^{0 \cdot 3 q}$. Find the total revenue function.
(b) Assume that the rate of investment is described by the function $I(t)=12 t^{1 / 3}$ and that $K(0)=25$. Find the time path of capital stock K.
12. Find the inverse of the matrix $\left[\begin{array}{ll}7 & 6 \\ 0 & 3\end{array}\right]$.
13. Use the Lagrange multiplier method to find the stationary values of z in the following :
(a) $z=x y$, subject to $x+2 y=2$
(b) $z=7-y+x^{2}$, subject to $x+y=0$

स्नातक उपाधि कार्यक्रम (बी.डी.पी.)

सत्रांत परीक्षा

जून, 2014

बी.ई.सी.ई.-015 : अर्थशास्त्र की प्रारंभिक गणितीय विधियाँ

समय : 3 घण्टे
अधिकतम अंक : 100

नोट : प्रत्क्षेक खण्ड से दिए गए निर्देशनुसार प्रश्नों के उत्तर दीजिए ।

खण्ड अ
λ
इस खण्ड से किन्हीं दो प्रश्नों के उत्तर दीजिए।
$2 \times 20=40$

1. अधिकतम कीजिए

$$
\int_{0}^{T}-\left(t^{2}+u^{2}\right) d t
$$

संरोधाधीन : $\frac{\mathrm{dy}}{\mathrm{dt}}=\mathrm{u}$ और $\mathrm{y}(0)=4, \mathrm{y}(\mathrm{T})=5$.
यहाँ y द्वारा अवस्थिक चर निर्दिष्ट है।
P.T.O.
2. निम्नलिखित बाज़ार प्रतिमान पर विचार कीजिए :

$$
\begin{aligned}
& Q_{d t}=\alpha-\beta P_{t}(\alpha, \beta>0) \\
& Q_{s t}=-\gamma+\delta P_{t}(\gamma, \delta>0) \\
& P_{t+1}=P_{t}-\sigma\left(Q_{s t}-Q_{d t}\right)(\sigma>0)
\end{aligned}
$$

यहाँ σ स्टॉक-प्रेरित कीमत-समंजन गुणांक है । कीमत चर का काल पथ का वर्णन कीजिए।
3. इस अवस्था पर गौर कीजिए : यदि एक फैक्टरी बंद होती है तो 1200 मज़दूर बेरोजगार हो जाएँगे और वे नया रोजगार तलाशने को विवश होंगे । अत: दो अवस्थाएँ हैं : रोजगार सहित और बेरोजगार - इनका प्रारंभिक सदिश है $[\mathrm{E}, \mathrm{U}]=[0,1200]$. मान लीजिए कि किसी अवधि में बेरोजगार व्यक्तियों के रोजगार पा सकने की प्रायिकता 0.7 है और किसी भी रोजगार सहित व्यक्ति के रोजगार खो देने की प्रायिकता 0.1 है।
(i) इस समस्या के लिए मार्कोव संक्रमण आव्यूह बनाइए।
(ii) 3 अवधियों बाद कितने व्यक्ति बेरोजगार बचेंगे तथा 5 अवधियों बाद क्या स्थिति होगी ?
(iii) बेरोजगारी का स्थायी-अवस्था स्तर क्या होगा ?
4. व्युत्पत्ति सहित रॉय की समिका (तत्समक) और शेफर्ड की प्रमेयिका की व्याख्या कीजिए।

खण्ड ब

इस खण्ड से किन्हीं तीन प्रश्नों के उत्तर दीजिए । $3 \times 12=36$
5. एक उपभोक्ता का उपयोगिता फलन $\mathrm{u}=(\mathrm{x} \cdot \mathrm{y})$ है - यहाँ x और y दो वस्तुओं की उपभुक्त मात्राएँ हैं । वस्तुओं की कीमतें क्रमशः p_{x} और p_{y} तथा उपभोक्ता की आय M है । साथ ही उपभोक्ता को C संख्या में कूपन सुलभ हैं - वह इनसे C_{x} तथा C_{y} कूपन कीमतों पर x अथवा y खरीद सकता है। इस समस्या के लिए लग्रांज पद निर्धारित कीजिए और कून - टक्कर शर्तें भी लिखिए।
6. निम्नलिखित द्यूत को पश्चगामी प्ररोचन (आगमन) विधि द्वारा हल कीजिए :

(यहाँ $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$ और F द्वारा चालों और 1,2 द्वारा खिलाड़ी दर्शाए गए हैं)
7. गत्यात्मक प्रोग्रामन विधि की गत्यात्मक अभीष्टीकरण (इष्टतमीकरण) की समस्याओं के समाधान की तकनीक के रूप में चर्चा कीजिए।
8. इस उत्पादन फलन के लिए x_{1} के औसत और सीमांत उत्पाद फलनों की रचना कीजिए :
$q=x_{1} x_{2}-0.2 x_{1}^{2}-0.8 x_{2}^{2}$. मान लीजिए $x_{2}=10$.
x_{1} के किन मानों पर इसके औसत उत्पाद और सीमांत उत्पाद शून्य होंगे ?
9. सिद्ध कीजिए कि कॉब-डग्लस उत्पादन फलन $Q=A K^{\alpha} L^{\beta}$ में α और β क्रमशः पूँजी और श्रम निवेश के प्रति उत्पादन की आंशिक लोचशीलताएँ दर्शाते हैं ।

खण्ड स

इस खण्ड से किन्हीं तीन प्रश्नों के उत्तर दीजिए । $3 \times 8=24$
10. मान लीजिए उत्पाद Q तीन आदानों का फलन है । ये आदान L, K और N हैं तथा उत्पादन फलन है :

$$
Q=A K^{a} L^{b} N^{c}
$$

(क) क्या यह फलन समघातीय है ? यदि हाँ, तो उसकी कोटि क्या है ?
(ख) यदि आदान N को इसके सीमांत उत्पाद के समान प्रतिफल दिया जाए तो उत्पाद में इसका भाग कितना होगा ?
11. (क) सीमांत आगम फलन है :
$R^{\prime}(q)=28 q-e^{0.3 q}$
इसका कुल आगम फलन ज्ञात कीजिए ।
(ख) मान लीजिए कि निवेश दर इस फलन द्वारा निर्दिष्ट है :
$\mathrm{I}(\mathrm{t})=12 \mathrm{t}^{1 / 3}$ और $\mathrm{K}(0)=25$ । पूँजी भंडार K का काल पथ ज्ञात कीजिए ।
12. इस आव्यूह का विलोम ज्ञात कीजिए :
$\left[\begin{array}{ll}7 & 6 \\ 0 & 3\end{array}\right]$
13. निम्नलिखित में z के स्थिरतापूर्ण मान ज्ञात करने के लिए लग्रांज गुणक विधि का प्रयोग कीजिए :
(क) $\mathrm{z}=\mathrm{xy}$, संरोधाधीन : $\mathrm{x}+2 \mathrm{y}=2$
(ख) $\mathrm{z}=7-\mathrm{y}+\mathrm{x}^{2}$, संरोधाधीन : $\mathrm{x}+\mathrm{y}=0$

