P.G. DIPLOMA IN ANALYTICAL CHEMISTRY (PGDAC)

Term-End Examination
June, 2014

MCH-004 : ELECTROANALYTICAL AND OTHER METHODS

Time: 3 hours
Maximum Marks : 75
Note: Answer any five questions in all. All questions carry equal marks.

1. (a) Calculate the potential of the cell represented by the expression below :

$$
\mathrm{Zn}\left|\mathrm{Zn}^{2+}(0.060 \mathrm{M}) \| \mathrm{Cu}^{2+}(0.044 \mathrm{M})\right| \mathrm{Cu}
$$

Given E° for Cu electrode $=+0 \cdot 337 \cdot \mathrm{~V}$ and Zn electrode $=-0.763 \mathrm{~V}$.
(b) Calculate the pH during titration of $50 \mathrm{~cm}^{3} 0.05 \mathrm{M} \mathrm{NaOH}$ with 0.10 M HCl after adding $24.50 \mathrm{~cm}^{3}$ of the acid.
(c) What are ion selective electrodes? Explain their working by citing an example. Comment on the applications of these types of electrodes.
2. (a) Define molar and equivalent conductivity. How are they related with each other?
(b) The resistance of $0 \cdot 10 \mathrm{M}$ solution of a salt occupying a volume between platinum electrodes 2.0 cm apart and $6.0 \mathrm{~cm}^{2}$ in area was found to be 30 ohms. Calculate the molar conductivity of the solution.
(c) What are the requirements of a good electrodeposition? Discuss the conditions which favour good electrodeposition.
3. (a) Discuss the principle of coulometric titrations. How is the titrant generated externally?
(b) How many minutes will it take for a current of 0.60 amps to cause the deposition of 0.60 g of silver from a solution on the basis of 80.0% current efficiency ? At. mass of silver $=107.9 \mathrm{amu}$.
(c) What is meant by the term voltammetry? Give a broad classification of commonly used voltammetric techniques.
4. (a) Explain the principle of Linear Sweep
Voltammetry.
(b) Write Ilkovic equation and explain each term in it.
(c) Draw a typical polarogram explaining each part of the curve. What is half-wave potential?

4
(d) What is migration current? How can it be eliminated?

4
5. (a) How are cadmium and lead determined quantitatively by polarography?
(b) Explain the basic principle of amperometric titration. Discuss the advantages of this titrimetric method.
6. (a) Discuss the factors affecting a TGA curve. 4
(b) Describe the application of TGA in the analysis of polymeric materials and reaction kinetics with suitable examples.
(c) What type of basic information is derived from DTA curves ? Illustrate your answer with a suitable example.
(d) What are the essential components for the experimental set-up for carrying out enthalpy titrations? Explain the role of each component.

4
7. (a) What is the principle and working of a gas ionization type detector ? Explain the different parts of a typical current voltage curve highlighting the different features.

$$
7
$$

(b) Discuss the advantages of isotope dilution technique. 4
MCH-004
(c) A solution contains an unknown amount of cobalt. A spike solution which contains 8.00 mg of cobalt spiked with Co^{60} and has a measured activity of 400 cpm is added to $10 \mathrm{~cm}^{3}$ of the unknown solution. After mixing a portion of cobalt is isolated as a pure cobalt metal sample by electrodeposition. The isolated cobalt has a mass of 10.0 mg and a measured activity of 200 cpm . Calculate the mass of cobalt, in $\mathrm{mg} / \mathrm{cm}^{3}$, in the original sample solution.
8. (a) What are the advantages of neutron activation analysis over other instrumental methods of analysis ? What are the limitations of the technique?
(b) 1.00 g of an ore containing $0.10 \% \mathrm{Au}$ was irradiated inside a nuclear reactor at a thermal neutron flux of $1.0 \times 10^{12} \mathrm{n} \mathrm{cm}^{-2} \mathrm{sec}^{-1}$ for 2.69 days. Calculate the radioactivity due to Au^{198} in $\mu \mathrm{C}$ immediately after the end of the irradiation.

Given :

(i) percentage abundance of $\mathrm{Au}^{197}=100$
(ii) cross section of $\mathrm{Au}^{197}(\mathrm{n}, \mathrm{r}) \mathrm{Au}^{198}=9$ barns
(iii) half life of $\mathrm{Au}^{198}=2 \cdot 69$ days
(c) What are radiometric titrations? How are they conducted? Explain the technique by giving an example of the titration.

