No. of Printed Pages : 6

(iii)

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

June, 2014

MMTE-007 : SOFT COMPUTING AND ITS APPLICATIONS

Time : 2	2 hours	Maximum Marks : 50
		(Weightage : 50%)
Note :	(i)	Question No. 7 is Compulsory.
	(ii)	Attempt any four questions from Q. No. 1 to 6 .

Use of calculator is **not** allowed.

1. (a) In the field of computer networking there is an imprecise relationship between the level of use of a network communication band width and the latency experienced in peerto-peer communication. Let *X* be a fuzzy set of use levels (in terms of the percentage of full bandwidth used) and *Y* be a fuzzy set of latencies (in milliseconds) with the following membership function : $X = \left\{ \frac{0.2}{10} + \frac{0.5}{20} + \frac{0.8}{40} + \frac{1.0}{60} + \frac{0.6}{80} + \frac{0.1}{100} \right\},$

$$Y = \left\{ \frac{0.3}{0.5} + \frac{0.6}{1} + \frac{0.9}{1.5} + \frac{1.0}{4} + \frac{0.6}{8} + \frac{0.3}{20} \right\},\$$

MMTE-007

1

P.T.O.

(i) Find the Cartesian product represented by the relation $R=X\times Y$.

Now, suppose we have a second fuzzy set of bandwidth usage given by :

$$Z = \left\{ \frac{0.3}{10} + \frac{0.6}{20} + \frac{0.7}{40} + \frac{0.9}{60} + \frac{1}{80} + \frac{0.5}{100} \right\}$$

(ii) Find S = Z o R using $\sim \sim 1 \times 6 \sim 6 \times 6$

Max-min composition and max-product composition.

(b) Consider the following travelling salesman 4 problem involving 9 cities.

Parent 1 :	В	С	D	E	F	G	Η	Ι	J
Parent 2 :	D	E	F	В	С	J	Ι	Η	G

Determine the children solution using :

- (i) Order crossover #1, assuming 3rd and 7th as the crossover sites.
- (ii) Order crossover #2, assuming 3rd, 5th and 7th as the crossover sites.
- (a) Consider the following modification of the 4 cost function defined in the following equation :

$$J(\mu_j) = \sum_{j=1}^{K} \sum_{i=1}^{N} W_{ij} \|x_i - \mu_j\|^2$$

In this function, the weighting factor W_{ij} is defined as follows :

 $W_{ij} = \begin{cases} 1 & \text{if the data point } x_i & \text{lies inside cluster } J \\ 0 & \text{otherwise} \end{cases}$

Show that the minimizing solution of this cost function is

$$\hat{\mu}_{j} = \frac{\sum_{i=1}^{N} W_{ij} x_{i}}{\sum_{i=1}^{N} W_{ij}}, j = 1, 2, \dots K$$

How do you interpret the expressions in the numerator and denominator of this formula ?

(b) Improve the solution of the following **6** problem :

Max. $f(x) = x^2$

subject to $0 \le x \le 15$, by considering the length of the string as 4. Show only one iteraction for a population of size 4.

4

3. (a) Two fuzzy sets *P* and *Q* are defined on *x* as follows :

$\mu(x_i)$	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	x 4	x 5
Р	0.1	0.2	0.7	0.5	0.4
Q	0.9	0.6	0.3	0.2	0.8

Find the following λ cut sets

- (i) $(\overline{P})_{0,2}$ and $(\overline{Q})_{0,3}$
- (ii) $(Q \cup \overline{P})_{0.8}$
- (iii) $(P \cap Q)_{0.4}$

- (b) Compute the weight matrix for a 4-neuron Hopfield net with the single fundamental memory $\xi 1 = [1, -1, -1, 1]$ stored in it.
- (c) Describe the relationship between the 3
 Self-Organising Map algorithm, and the Learning Vector Quantisation algorithm.
- **4.** (a) The input to a single input neuron is 4.0, its **4** weight is 2.3 and its bias is -6.
 - (i) What is the net input to the transfer function ?
 - (ii) What is the neuron output for the following transfer functions :
 - (A) Hard limit,
 - (B) Linear
 - (C) Log-sigmoid ?
 - (b) Consider a Hopfield network whose weight 6 matrix is given by :

$$W = \frac{1}{3} \begin{pmatrix} 0 & -2 & 2 \\ -2 & 0 & -2 \\ 2 & -2 & 0 \end{pmatrix}$$

Run the Hopfield network for the test input vectors $pt_1 = (1 \ 1 \ -1)$ and $pt_2 = (-1 \ -1 \ 1)$.

- 5. (a) The following is a network of linear neurons, that is, neurons whose output is identical to their net input, $o_i = net_i$.
 - (i) Compute the output of the hidden-layer and the output-layer neurons for the given inputs (0.5, 1) and enter those values into the corresponding circles.

6

3

(ii) What is the output of the network for the input (1, 2), i.e. the left input neuron having the value 1 and the right one having the value 2? Do you have to do all the network computations once again in order to answer this question? Explain.

- (b) List all the schemas of the chromosome 4 "101" and find their corresponding orders and lengths.
- 6. (a) If the input vectors are $I_1 = [1 1]^T$, 6 $I_2 = [1 1]^T$ and $I_3 = [-1 1]^T$, use the Kohonen learning with $\alpha = 0.5$ and train for one pass through the input vector. Assume an initial weight matrix.

$$W = \begin{pmatrix} 0 & -1 \\ \frac{-2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} \\ \frac{-1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix}$$

(b) Show that XOR can be solved using **4** multilayer perceptron.

- 7. Which of the following statements are true or **10** false ? Give reasons for your answer.
 - (a) The Fuzzy relation

$$R = \begin{bmatrix} 1 & 0.6 & 0 & 0.2 & 0.3 \\ 0.6 & 1 & 0.4 & 0 & 0.8 \\ 0 & 0.4 & 1 & 0 & 0 \\ 0.2 & 0 & 0 & 1 & 0.5 \\ 0.3 & 0.8 & 0 & 0.5 & 1 \end{bmatrix}$$
 is

always reflexive, symmetric and transitive.

- (b) For a genetic algorithm to be used to evolve a binary string of length n containing only 1s, the offspring of parents with a high fitness value have a high fitness value.
- (c) Hopfield networks are most often used for auto-association.
- (d) The network shown in the figure below is a single layer feed-forward neural network as well as an auto - associative neural network.

where F_1 , F_2 and F_3 are neurons of output layer.

(e) If a 3-input neuron is trained to output a zero when the input is 110 and a one when the input is 111, then after generalization, the output will be zero for the following inputs : 000, 010, 110, 100.

MMTE-007

6