M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

Term-End Examination
June, 2014

MMTE-007 : SOFT COMPUTING AND ITS APPLICATIONS

Time : 2 hours
Maximum Marks : 50
(Weightage : 50\%)
Note :
(i) Question No. 7 is Compulsory.
(ii) Attempt any four questions from Q. No. 1 to 6 .
(iii) Use of calculator is not allowed.

1. (a) In the field of computer networking there is 6 an imprecise relationship between the level of use of a network communication band width and the latency experienced in peer-to-peer communication. Let X be a fuzzy set of use levels (in terms of the percentage of full bandwidth used) and $\underset{\sim}{\gamma}$ be a fuzzy set of latencies (in milliseconds) with the following membership function :

$$
\begin{aligned}
& X=\left\{\frac{0.2}{10}+\frac{0.5}{20}+\frac{0.8}{40}+\frac{1.0}{60}+\frac{0.6}{80}+\frac{0.1}{100}\right\} \\
& Y=\left\{\frac{0.3}{0.5}+\frac{0.6}{1}+\frac{0.9}{1.5}+\frac{1.0}{4}+\frac{0.6}{8}+\frac{0.3}{20}\right\}
\end{aligned}
$$

(i) Find the Cartesian product represented by the relation $\underset{\sim}{R}=\underset{\sim}{X} \times \underset{\sim}{Y}$. Now, suppose we have a second fuzzy set of bandwidth usage given by :

$$
Z=\left\{\frac{0.3}{10}+\frac{0.6}{20}+\frac{0.7}{40}+\frac{0.9}{60}+\frac{1}{80}+\frac{0.5}{100}\right\} .
$$

Max-min composition and maxproduct composition.
(b) Consider the following travelling salesman problem involving 9 cities.

Parent $1:$	B	C	D	E	F	G	H	I
Parent $2:$	D	I	F	B	C	J	I	H

Determine the children solution using :
(i) Order crossover \#1, assuming 3 rd and $7^{\text {th }}$ as the crossover sites.
(ii) Order crossover \#2, assuming $3^{\text {rd }}, 5^{\text {th }}$ and $7^{\text {th }}$ as the crossover sites.
2. (a) Consider the following modification of the cost function defined in the following equation :

$$
J\left(\mu_{j}\right)=\sum_{j=1}^{K} \sum_{i=1}^{N} W_{i j}\left\|x_{i}-\mu_{j}\right\|^{2}
$$

In this function, the weighting factor $\mathrm{W}_{i j}$ is defined as follows :
$W_{i j}=\left\{\begin{array}{l}1 \text { if the data point } x_{i} \text { lies inside cluster } J \\ 0 \text { otherwise }\end{array}\right.$
Show that the minimizing solution of this cost function is

$$
\hat{\mu}_{j}=\frac{\sum_{i=1}^{N} W_{i j} x_{i}}{\sum_{i=1}^{N} W_{i j}}, j=1,2, \ldots K
$$

How do you interpret the expressions in the numerator and denominator of this formula?
(b) Improve the solution of the following problem:
Max. $f(x)=x^{2}$
subject to $0 \leq x \leq 15$, by considering the length of the string as 4 . Show only one iteraction for a population of size 4 .
3. (a) Two fuzzy sets P and Q are defined on x as follows :

$\mu\left(x_{i}\right)$	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
P	0.1	0.2	0.7	0.5	0.4
Q	0.9	0.6	0.3	0.2	0.8

Find the following λ cut sets
(i) $\quad(\bar{P})_{0.2}$ and $(\bar{Q})_{0.3}$
(ii) $\quad(Q \cup \bar{P})_{0.8}$
(iii) $(P \cap Q)_{0.4}$
(b) Compute the weight matrix for a 4-neuron

Hopfield net with the single fundamental memory $\xi 1=[1,-1,-1,1]$ stored in it.
(c) Describe the relationship between the Self-Organising Map algorithm, and the Learning Vector Quantisation algorithm.
4. (a) The input to a single input neuron is 4.0 , its weight is 2.3 and its bias is -6 .
(i) What is the net input to the transfer function?
(ii) What is the neuron output for the following transfer functions :
(A) Hard limit,
(B) Linear
(C) Log-sigmoid?
(b) Consider a Hopfield network whose weight matrix is given by :
$W=\frac{1}{3}\left(\begin{array}{ccc}0 & -2 & 2 \\ -2 & 0 & -2 \\ 2 & -2 & 0\end{array}\right)$
Run the Hopfield network for the test input vectors $p t_{1}=\left(\begin{array}{ll}1 & 1\end{array}\right)$ and $p t_{2}=\left(\begin{array}{ll}-1 & -1\end{array}\right)$.
5. (a) The following is a network of linear neurons, that is, neurons whose output is identical to their net input, $o_{i}=$ net $_{i}$.
(i) Compute the output of the hidden-layer and the output-layer neurons for the given inputs $(0.5,1)$ and enter those values into the corresponding circles.
(ii) What is the output of the network for the input (1, 2), i.e. the left input neuron having the value 1 and the right one having the value 2 ? Do you have to do all the network computations once again in order to answer this question? Explain.

(b) List all the schemas of the chromosome " 101 " and find their corresponding orders and lengths.
6. (a) If the input vectors are $\mathrm{I}_{1}=\left[\begin{array}{ll}1 & -1\end{array}\right]^{\mathrm{T}}$, $I_{2}=[11]^{\mathrm{T}}$ and $\mathrm{I}_{3}=[-11]^{\mathrm{T}}$, use the Kohonen learning with $\alpha=0.5$ and train for one pass through the input vector. Assume an initial weight matrix.

$$
W=\left(\begin{array}{cc}
0 & -1 \\
\frac{-2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} \\
\frac{-1}{\sqrt{5}} & \frac{2}{\sqrt{5}}
\end{array}\right)
$$

(b) Show that $X O R$ can be solved using multilayer perceptron.
7. Which of the following statements are true or false ? Give reasons for your answer.
(a) The Fuzzy relation

$$
R=\left[\begin{array}{ccccc}
1 & 0.6 & 0 & 0.2 & 0.3 \\
0.6 & 1 & 0.4 & 0 & 0.8 \\
0 & 0.4 & 1 & 0 & 0 \\
0.2 & 0 & 0 & 1 & 0.5 \\
0.3 & 0.8 & 0 & 0.5 & 1
\end{array}\right] \text { is }
$$

always reflexive, symmetric and transitive.
(b) For a genetic algorithm to be used to evolve a binary string of length n containing only 1 s , the offspring of parents with a high fitness value have a high fitness value.
(c) Hopfield networks are most often used for auto-association.
(d) The network shown in the figure below is a single layer feed-forward neural network as well as an auto-associative neural network.

where F_{1}, F_{2} and F_{3} are neurons of output layer.
(e) If a 3-input neuron is trained to output a zero when the input is 110 and a one when the input is 111, then after generalization, the output will be zero for the following inputs: 000, 010, 110, 100.

