No. of Printed Pages : 3

MMTE-006

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

Term-End Examination

June, 2014

MMTE-006 : CRYPTOGRAPHY

Time : 2 hours

Maximum Marks : 50

Note: Answer any five questions. Calculators are not allowed.

1. (a	(a) Factorise $x^3 - 9$ into irreducible factors over $\mathbf{F}_{11}[x]$.		
(b) Explain RC4 pseudo random generation algorithm with pseudo-code.	5	
2. (a	 Distinguish between the following : (i) MAC and Hash functions. (ii) Symmetric key cryptosystems and Public key cryptosystems. 	1	
(b) Give an example of a PRBG (Pseudo Random Bit Generator). 2	2	
(c)	Find 5 ¹⁵ (mod 71) using repeated squaring algorithm.	4	
MMTE-	006 1 P.T.O		

00991

3.	(a)	Find the smallest pseudo prime to the base 7.	4
	(b)	Explain the cipher block chaining mode of operation.	3
	(c)	 Explain the following properties of a Hash function : (i) One way (ii) Collision resistance (iii) Second pre-image resistance 	3
4.	(a)	Explain the terms Confidentiality, Authentication, Data integrity and Non-repudiation. How can these be achieved ?	5
	(b)	Suppose Bob sets up the parameters for ElGamal cryptosystem as follows : He chooses the prime $p = 181$ and the primitive root 2. He chooses $x = 21$ and publishes the values (181, 2, 86). He receives the message (32, 145) from Alice.	

5. (a) Apply autocorrelation test for d = 3 on the following sequence :

Decrypt the message.

1100100100001111110110100001 at $\alpha = 0.05$ You may like to use the following data : 5

5

а	0.25	0.02	0.025	0.01
x	0.6745	1.6449	1·9600	2.3263

If X is a random variable having standard normal distribution, then P(X > x) = a.

MMTE-006

(b) Let $f(x) = x^4 + x^3 + x^2 + 1$ and $g(x) = x^3 + 1 \in \mathbf{F}_2[x].$

> Find gcd(f, g) using the extended Euclidean algorithm and express the gcd in the form u(x) f(x) + v(x) g(x).

- 6. (a) Use Fermat factorisation method to factorise 71273.
 - (b) Use the simple columnar transposition cipher with column width 4 to encrypt the text "ATTACK FROM THE PAVILION END".
 - (c) Explain the Davies Meyer method for constructing a block function from a block cipher.

3

 $\mathbf{2}$

5

5