M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)
 M.Sc. (MACS)

00991

Term-End Examination
June, 2014

MMTE-006 : CRYPTOGRAPHY

Time : 2 hours
Maximum Marks : 50
Note: Answer any five questions. Calculators are not allowed.

1. (a) $\quad \begin{aligned} & \text { Factorise } x^{3}-9 \text { into irreducible factors over } \\ & F_{11}[x] .\end{aligned}$
(b) Explain RC4 pseudo random generation algorithm with pseudo-code.
2. (a) Distinguish between the following: 4
(i) MAC and Hash functions.
(ii) Symmetric key cryptosystems and Public key cryptosystems.
(b) Give an example of a PRBG (Pseudo Random Bit Generator).
(c) Find $5^{15}(\bmod 71)$ using repeated squaring algorithm.
3. (a) Find the smallest pseudo prime to the base 7 .
(b) Explain the cipher block chaining mode of operation.
(c) Explain the following properties of a Hash function :
(i) One way
(ii) Collision resistance
(iii) Second pre-image resistance
4. (a) Explain the terms Confidentiality, Authentication, Data integrity and Non-repudiation. How can these be achieved?
(b) Suppose Bob sets up the parameters for ElGamal cryptosystem as follows :
He chooses the prime $p=181$ and the primitive root 2 . He chooses $\mathrm{x}=21$ and publishes the values (181, 2, 86). He receives the message $(32,145)$ from Alice. Decrypt the message.
5. (a) Apply autocorrelation test for $\mathrm{d}=3$ on the following sequence :
1100100100001111110110100001 at $\alpha=0.05$
You may like to use the following data :

a	0.25	0.05	0.025	0.01
x	0.6745	1.6449	1.9600	2.3263

If X is a random variable having standard normal distribution, then $\mathrm{P}(\mathrm{X}>\mathrm{x})=\mathrm{a}$.
(b) Let $f(x)=x^{4}+x^{3}+x^{2}+1$ and $g(x)=x^{3}+1 \in F_{2}[x]$.

Find $\operatorname{gcd}(f, g)$ using the extended Euclidean algorithm and express the gcd in the form $u(x) f(x)+v(x) g(x)$.
6. (a) Use Fermat factorisation method to factorise 71273.
(b) Use the simple columnar transposition cipher with column width 4 to encrypt the text "ATTACK FROM THE PAVILION END".
(c) Explain the Davies - Meyer method for constructing a block function from a block cipher.

