M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

$\square \| 1 \underline{\square} 1$ Term-End Examination June, 2014

MMTE-005 : CODING THEORY

Time : 2 hours
Maximum Marks : 50
Weightage : 50\%
Note: Answer any five questions from question nos. 1 to 6. Calculators are not allowed.

1. (a) Define a Linear Code and give an example of the same.
(b) Prove that a self-dual code has even length n and dimension $\frac{\mathrm{n}}{2}$.

3
(c) Let C be the Hamming code with the parity check matrix
$H=\left[\begin{array}{lllllll}0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1\end{array}\right]$.
(i) Encode the message 0111.
(ii) If the received codeword is 0110100 , decode and find the message.
2. (a) Define perfect code and give an example with justification.
(b) Let $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{x}+1 \in \mathrm{~F}_{5}[\mathrm{x}]$.
(i) Prove that $\mathrm{f}(\mathrm{x})$ is irreducible over \mathbf{F}_{5}.
(ii) Let α be a root of $f(x)$. Show that α is not primitive.
(iii) Find a primitive element of the form $\mathrm{a} \alpha+\mathrm{b}$, where $\mathrm{a}, \mathrm{b} \in \mathbf{F}_{5}$.
3. (a) Prove that the integers modulo n do not form a field if n is not prime.
(b) Find the 2 cyclotomic cosets modulo 7. Hence, factorize $x^{7}-1$ over $F_{2}[x]$.
(c) Prove that a self-orthogonal binary cyclic code is doubly-even.
4. (a) Write down the Peterson - Gorenstein Zierler Decoding Algorithm for BCH code.
(b) State the MacWilliams equations.
(c) Find the weight enumerator of the binary code with generator matrix

$$
\mathrm{G}=\left[\begin{array}{llllll}
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

5. (a) Construct the generating idempotents of binary duadic codes of length 7.
(b) Let \mathbf{C} be the \mathbf{Z}_{4}-linear code of length 4 with
generator matrix $G=\left(\begin{array}{cccc}1 & 0 & 1 & 3 \\ 0 & 1 & 3 & 2\end{array}\right)$.
List all codewords of C.
(c) If C is a \mathbf{Z}_{4}-linear code, prove that the Gray image of C is distance invariant.
6. (a) Define convolutional code and give an example.
(b) Prove that $G=\left[1+D^{2}+D^{3} \quad 1+D^{2}\right]$ is a canonical generator matrix for a $(2,1)$ code.
(c) Let C be the $[7,4,2]$ binary code with parity check matrix
$\mathrm{H}=\left[\begin{array}{lllllll}1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1\end{array}\right]$.
Draw the Tanner graph for this code and mark variable nodes and check nodes.
