No. of Printed Pages: 3

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

00151

Term-End Examination

June. 2014

MMTE-005 : CODING THEORY

Time : 2 hours

Maximum Marks : 50

Weightage : 50%

MMTE-005

Note: Answer any five questions from question nos. 1 to 6. Calculators are **not** allowed.

Define a Linear Code and give an example 1. (a) of the same. 3 (b) Prove that a self-dual code has even length n and dimension $\frac{n}{2}$. 3 Let C be the Hamming code with the parity (c) check matrix

	0	1	1	1	1	0	0	
H =	1	0	1	1	0	1	0	,
	1	1	0	1	0	0	1	

- Encode the message 0111. (i)
- (ii) If the received codeword is 0110100, decode and find the message.

MMTE-005

P.T.O.

4

1

2.	(a)	Define perfect code and give an example with justification.	1+2						
	(b)	Let $f(x) = x^2 + x + 1 \in \mathbf{F}_5[x]$.							
		(i) Prove that $f(x)$ is irreducible over \mathbf{F}_5 .							
		(ii) Let α be a root of $f(x)$. Show that α is not primitive.							
		(iii) Find a primitive element of the form $a\alpha + b$, where $a, b \in \mathbf{F}_5$.	7						
3.	(a)	Prove that the integers modulo n do not form a field if n is not prime.	2						
	(b)	Find the 2 cyclotomic cosets modulo 7. Hence, factorize $x^7 - 1$ over $F_2[x]$.	3						
	(c)	Prove that a self-orthogonal binary cyclic code is doubly-even.	5						
4.	(a)	Write down the Peterson – Gorenstein – Zierler Decoding Algorithm for BCH code.	4						
	(b)	State the MacWilliams equations.	2						
	(c)	Find the weight enumerator of the binary code with generator matrix							
		$\begin{bmatrix} 1 & 0 & 1 & 0 & 0 \end{bmatrix}$							
		$G = \begin{vmatrix} 0 & 1 & 0 & 1 & 0 & 1 \end{vmatrix}.$	4						

MMTE-005

.

2

Construct the generating idempotents of 5. (a) binary duadic codes of length 7. 4 (b) Let C be the \mathbf{Z}_4 -linear code of length 4 with generator matrix $G = \begin{pmatrix} 1 & 0 & 1 & 3 \\ & & & \\ 0 & 1 & 3 & 2 \end{pmatrix}$. List all codewords of C. 3 (c) If C is a \mathbb{Z}_4 -linear code, prove that the Gray image of C is distance invariant. 3 Define convolutional code and give an 6. (a) example. 3 Prove that $G = [1 + D^2 + D^3 - 1 + D^2]$ is a (b) canonical generator matrix for a (2, 1) code. 4 Let C be the [7, 4, 2] binary code with (c) parity check matrix $\mathbf{H} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}.$ Draw the Tanner graph for this code and mark variable nodes and check nodes. 3

MMTE-005

1,000

3