M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

09997

Term-End Examination
June, 2014

MMTE-004 : COMPUTER GRAPHICS

Time : 2 hours
Maximum Marks : 25
(Weightage 50\%)
Note: Question no. 1 is compulsory. Attempt any three questions out of question nos. 2 to 5 . Use of calculator is not allowed.

1. State whether the following statements are true or false. Justify your answer.
(a) The refresh rate of a 512×512 frame buffer is approximately 21 frames/second, if the access time for each pixel is 200 nanoseconds.
(b) 2-D rotations about the origin are non-commutative.
(c) If a polygon lies on a plane
$\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}+\mathrm{D}=0$, then $\mathrm{N}=(\mathrm{A}, \mathrm{B}, \mathrm{C})$ is normal to that plane.
(d) The matrix $\left[\begin{array}{llll}\mathrm{d} & 0 & 0 & 0 \\ 0 & \mathrm{~d} & 0 & 0 \\ 0 & 0 & \mathrm{~d} & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$ represents the perspective projection matrix on the plane $z=d$, where the centre of projection is $(0,0,0)$.
(e) A cubic Bezier curve cannot be drawn if the control points are located at the vertices of a rectangle.
2. (a) Plot a circle at $(5,5)$ having a radius of 5 units using midpoint circle algorithm.
(b) Use the Cohen Sutherland algorithm to clip the line $\mathrm{P}_{1}(70,20)$ and $\mathrm{P}_{2}(100,10)$ against a window with lower left hand corner (50,10) and upper right hand corner (80, 40).
3. (a) The reflection along the line $y=x$ is equivalent to the reflection along the x -axis followed by counter clockwise rotation by an angle of θ degrees. Find the value of θ.
(b) Find a matrix for parallel projection onto the plane $3 x+y+4 z+1=0$ when an orthographic projection is used.
4. (a) Write the output obtained from each of the following OpenGL statements :
(i) glMatrixMode (GL - Projection) glLoadIdentity ()
(ii) glViewPort (0, 0, 2, 2)
(iii) glutInitDisplayMode (GLUT_SINGLE/GLUT_RGB)
Also draw the output obtained after executing the statements (i) to (iii).
(b) Plot the Bezier curve of order 3 with polygon vertices $\mathrm{A}(1,1), \mathrm{B}(2,3), \mathrm{C}(4,3)$ and $\mathrm{D}(6,4)$.
5. (a) Find out a window-to-viewport transformation that transforms a rectangular window with corners (1, 1), $(3,1),(3,2),(1,2)$ to another window with corners $(0,0),(2,0),(1,1),(3,1)$. Also write a C -function that will perform this transformation using OpenGL transformation functions.
(b) Show that the 2×2 matrix

$$
\mathrm{T}=\left[\begin{array}{cc}
\frac{1-\mathrm{t}^{2}}{1+\mathrm{t}^{2}} & \frac{2 \mathrm{t}}{1+\mathrm{t}^{2}} \\
\frac{-2 \mathrm{t}}{1+\mathrm{t}^{2}} & \frac{1-\mathrm{t}^{2}}{1+\mathrm{t}^{2}}
\end{array}\right]
$$

represents pure rotation.

