M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

Term-End Examination
June, 2014

MMTE-003 : PATTERN RECOGNITION AND IMAGE PROCESSING

Time : 2 hours
Maximum Marks : 50
(Weightage : 50\%)
Note: Attempt any five questions. All questions carry equal marks. Use of calculator is not allowed.

1. (a) Explain why discrete histogram
equalization does not, in general, yield a
flat histogram.
(b) Explain why we apply histogram specification rather than equalization for certain applications.
(c) An image has 8 levels of representation with probabilities $0,0,0,0 \cdot 15,0 \cdot 20,0 \cdot 30$, $0 \cdot 20$, 0.15 respectively. Obtain its histogram specification.
2. (a) Explain two similarities and two differences between the spatial convolution and spatial correlation.
(b) Perform the linear convolution between two matrices $x(m, n)$ and $h(m, n)$ given as
$x(m, n)=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$ and
$\mathrm{h}(\mathrm{m}, \mathrm{n})=[3,4,5]$. Also obtain the linear correlation between x and h and comment on the result obtained.
3. (a) Discrete derivative is based on computing differences of the form $f(x+1, y)-f(x, y)$ and $f(x, y+1)-f(x, y)$. Find the equivalent filter $H(u, v)$ in the frequency domain.
(b) Find the one-dimensional Walsh basis for fourth order system.
4. (a) Explain the limitations of inverse filtering and describe how Wiener filtering overcomes this problem.
(b) Describe optimal notch filtering with the help of an example.
(c) Obtain the DFT of $f(x, y)=1$.
5. (a) State and prove the Fourier-Slice theorem. How can it be used for reconstruction using parallel-beam filtered back projections?
(b) What will be obtained if the arithmetic mean filter is applied to an image again and again ? What will happen if median filter is used instead of mean filter?
6. A 4×4 gray image passes through three spatial linear, shift and invariant filters, resulting in three filtered output.

Obtain (A), (B) and (C).
7. (a) Apply the perceptron algorithm to the following pattern classes :

$$
\begin{aligned}
& \mathrm{W}_{1}:\left\{\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\right\} \\
& \mathrm{W}_{2}:\left\{\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\}
\end{aligned}
$$

Let $C=1$ and $\bar{W}(1)=\left[\begin{array}{r}-1 \\ -2 \\ -2 \\ 0\end{array}\right]$.
(b) Briefly explain any 5 pattern recognition component approaches, giving an example of each.

