M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)
 Term-End Examination

June, 2014

MMTE-001 : GRAPH THEORY

Time : 2 hours
Maximum Marks : 50
Weightage : 50%
Note: Question no. 1 is compulsory. Answer any four from the rest six (2-7). Calculators or any other electronic devices are not allowed.

1. State, giving justifications or illustrations, whether each of the following statements is true or false :
(a) A bipartite graph has no cycles as induced sub graphs.
(b) Complement of a disconnected graph is always connected.
(c) If the minimum vertex degree $\delta(\mathrm{G}) \geq 2$, then G contains a cycle.
(d) Number of even degree vertices in a graph is always odd.
(e) Every complete graph has a perfect matching.
2. (a) Draw a diagram of the Petersen graph.

Determine the maximum size of a clique, the maximum size of an independent set and the maximum length of a cycle in the Petersen graph.
(b) Prove that the center of a tree consists of a 4 vertex or a pair of adjacent vertices.
3. (a) Prove that a connected graph G is Eulerian if all its vertices are of even degree.
(b) Prove that every n-vertex graph with at least

4 n edges contains a cycle.
4. (a) If G is a simple n-vertex graph with 6 $\delta(G) \geq \frac{n-1}{2}$, prove that G is connected. Is the converse true ? Justify your answer.
(b) Draw a cubic graph G for which $\kappa(G)=1$ 4 and $\kappa^{\prime}(G)=2$. Justify your answer.
5. (a) Find a minimal spanning tree in the 4 following graph using Prim's Algorithm :

(b) State and prove Hall's Marriage theorem.
6. (a) Describe the Greedy Algorithm for Graph2 Colouring.
(b) Use the Greedy Algorithm to find a proper colouring of vertices in the Petersen graph.
(c) Define Hamiltonian closure of a graph G 4 and prove that Hamiltonian closure of a graph is well-defined.
7. (a) Draw the diagram of a connected plane 3 graph G with 10 vertices and $\delta(G)=3$.
(b) Draw the dual of the graph drawn in part 3 7(a).
(c) Prove that the chromatic number and the 4 clique number are same for any interval graph.

