M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

00926
M.Sc. (MACS)

Term-End Examination
June, 2014

MMT-007 : DIFFERENTIAL EQUATIONS AND NUMERICAL SOLUTIONS

Time : 2 hours
Maximum Marks : 50
(Weightage 50\%)
Note: Question 1 is compulsory. Do any four questions out of question nos. 2 to 7. All computations may be kept to 3 decimals. Use of calculators is not allowed.

1. State whether the following statements are true or false. Justify your answer with the help of a short proof or a counter example.
$2 \times 5=10$
(a) For the differential equation
$\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+p(p+1) y=0, x=1$ is a regular singular point.
(b) If $H_{n}(x)$ is the $n^{\text {th }}$ Hermite polynomial, then $\int_{-\infty}^{\infty} e^{-x^{2}} P(x) H_{n}(x) d x=2^{n} \cdot n!\sqrt{\pi}$, for any polynomial $\mathrm{P}(\mathrm{x})$ of degree $\mathrm{k}<\mathrm{n}$.
(c) The inverse Fourier transform
$\mathscr{F}^{-1}\left(\frac{1}{\alpha^{2}+\mathrm{i} \alpha+2}\right)=\frac{1}{3}\left[\mathrm{H}(\mathrm{x}) \mathrm{e}^{-\mathrm{x}}+\mathrm{H}(-\mathrm{x}) \mathrm{e}^{2 \mathrm{x}}\right]$.
(d) The interval of absolute stability of the Taylor series method

$$
y_{i+1}=y_{i}+h y_{i}^{\prime}+\frac{h^{2}}{2} y_{i}^{\prime \prime}
$$

for the initial value problem
$y^{\prime}=\lambda y, y\left(x_{0}\right)=y_{0}$ is $]-2,0[$.
(e) The order of the method

$$
u_{x x}=\frac{1}{h^{2}}[u(x+h, y)-2 u(x, y)+u(x-h, y)]
$$

is three.
2. (a) Solve by the method of Laplace transform :
$\mathrm{y}^{\prime \prime}+2 \mathrm{y}^{\prime}-3 \mathrm{y}=3, \mathrm{y}(0)=4, \mathrm{y}^{\prime}(0)=-7$
(b) Find the power series solution near $x=0$ of the differential equation

$$
\begin{equation*}
9 x(1-x) y^{\prime \prime}-12 y^{\prime}+4 y=0 \tag{6}
\end{equation*}
$$

3. (a) Find the solution of the boundary value problem
$\nabla^{2} u=x^{2}+y^{2}, 0 \leq x \leq 1,0 \leq y \leq 1$
subject to the boundary conditions
$\mathrm{u}=\frac{1}{12}\left(\mathrm{x}^{4}+\mathrm{y}^{4}\right)$ on the lines
$x=1, y=0, y=1$
and $12 u+\frac{\partial u}{\partial x}=x^{4}+y^{4}+\frac{x^{3}}{3}$ on $x=0$
using the five point formula. Assume $\mathrm{h}=\frac{1}{2}$ along both axes. Use central difference approximation in the boundary conditions.
(b) Derive the method

$$
y_{i+1}=a_{1} y_{i}+a_{2} y_{i-1}^{\prime}+h b_{0} y_{i+1}^{\prime}
$$

for solving the initial value problem $y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}$. Find the truncation error and the order of the method.
4. (a) Obtain the approximate value of $y(0 \cdot 8)$ for the initial value problem

$$
y^{\prime}=x^{2}+y^{2}, y(0)=1
$$

using the predictor-corrector method $P: y_{i+1}=y_{i-1}+\frac{4 h}{3}\left(2 f_{i}-f_{i-1}+2 f_{i-2}\right)$
$C: y_{i+1}=y_{i-1}+\frac{h}{3}\left(f_{i+1}+4 f_{i}+f_{i-1}\right)$
with $h=0 \cdot 2$. Calculate the starting values using the Euler method with the same step length. Perform two corrector iterations per step.
(b) Find Laplace inverse of $\frac{1}{\sqrt{2 \mathrm{~s}+3}}$.
5. (a) Find the solution of the heat equation

$$
\frac{\partial \mathbf{u}}{\partial \mathbf{t}}=\frac{\partial^{2} \mathbf{u}}{\partial \mathbf{x}^{2}}
$$

subject to the conditions
$\mathrm{u}(\mathrm{x}, 0)=0, \mathrm{u}(0, \mathrm{t})=0$ and $\mathrm{u}(1, \mathrm{t})=\mathrm{t}$, using implicit Crank - Nicolson method with $h=\frac{1}{2}$ and $k=\frac{1}{8}$. Integrate for two time levels.
(b) Construct Green's function for the boundary value problem

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+10 y=0, \quad 0<x<\pi / 2 \\
y(0)=0, \quad y(\pi / 2)=0
\end{gathered}
$$

6. (a) If $f^{\prime}\left(x_{k}\right)$ is approximated by
$f^{\prime}\left(x_{k}\right)=a f\left(x_{k+1}\right)+b f\left(x_{k+1}\right)$.
find the values of a and b. What is the order of approximation?
(b) Using Laplace transform, solve the integro-differential equation
$y^{\prime}+4 y+4 \int_{0}^{1} y(\tau) d \tau=5, y(0)=4$.
(c) Express $\mathrm{J}_{2}(\mathrm{x})$ and $\mathrm{J}_{3}(\mathrm{x})$ in terms of $\mathrm{J}_{0}(\mathrm{x})$ and $J_{1}(x)$.
7. (a) Solve the boundary value problem

$$
\begin{gathered}
y^{\prime \prime}=x y \\
y(0)+y^{\prime}(0)=1, y(1)=1
\end{gathered}
$$

Take $h=\frac{1}{3}$ and use second order method.
(b) Show that

$$
P_{n+1}^{\prime}(x)=(2 n+1) P_{n}(x)+P_{n-1}^{\prime}(x)
$$

where $P_{n}(x)$ is a Legendre polynomial of degree n.
(c) Using the substitution $z=\sqrt{x}$, reduce the given equation to Bessel equation and hence find its solution.

$$
\begin{equation*}
x y^{\prime \prime}+y^{\prime}+\frac{y}{4}=0 \tag{2}
\end{equation*}
$$

