M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)
 00321

 Term-End Practical Examination

 Term-End Practical Examination
 June, 2014

MMT-007 (P) : DIFFERENTIAL EQUATIONS AND NUMERICAL SOLUTIONS

Time: $1 \frac{1}{2}$ hours
Maximum Marks : 40
Note: There are two questions in this paper, totalling 30 marks. Answer both of them. Remaining 10 marks are for the viva-voce.

1. Write a program in ' C ' language to solve the initial value problem

$$
y^{\prime}=x+y^{3}, \quad y(0)=1
$$

in the interval [0, 2] using the Predictor-Corrector method :
$P: y_{n+1} \doteq y_{n}+\frac{h}{24}\left[55 y_{n}^{\prime}-59 y_{n-1}^{\prime}+37 y_{n-2}^{\prime}-9 y_{n-3}^{\prime}\right]$
$C: y_{n+1}=y_{n}+\frac{h}{24}\left[9 y_{n+1}^{\prime}+19 y_{n}^{\prime}-5 y_{n-1}^{\prime}+y_{n-2}^{\prime}\right]$
with $h=0 \cdot 2$. Calculate the starting value using the Euler's method with the same step length. Perform two corrector iterations per step.
2. Write a program in ' C ' language to solve the equation

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, 0 \leq x \leq 4, t>0 \\
& u(x, 0)=\frac{x}{3}\left(16-x^{2}\right), u(0, t)=u(4, t)=0
\end{aligned}
$$

with $h=1$ and $\lambda=\frac{1}{6}$ by using Schmidt method. Integrate for two time levels. 10

