M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

Term-End Examination

June, 2014

MMT-006 : FUNCTIONAL ANALYSIS

Time : 2 hours

HI H7A

Maximum Marks : 50

(Weightage 70%)

- Note: Question 1 is compulsory. Attempt any four of the remaining questions. Use of calculator is not allowed.
- 1. State whether the following statements are *true* or *false*. Give a brief justification with a short proof or a counter example. $2 \times 5 = 10$
 - (a) The closure of a linear subspace in a normed linear space is again a linear subspace.
 - (b) The map $P: \mathbb{R}^3 \to \mathbb{R}^3$, $P(x_1, x_2, x_3) = (x_1, x_2, 0)$, is an open map.
 - (c) l^1 is a reflexive space.
 - (d) Every Hilbert space is strictly convex.
 - (e) Every linear isometry on a Hilbert space is a unitary operator.

MMT-006

- - (b) Let S be a subset of a Hilbert space H. Show that $S^{\perp} = S^{\perp \perp \perp}$.
 - (c) Define $A: \mathbb{C}^3 \to \mathbb{C}^3$ by $A(z_1, z_2, z_3) = (\alpha_1 z_1, \alpha_2 z_2, \alpha_3 z_3), \alpha_j \in \mathbb{C}$. When is A a positive operator ?
- 3. (a) Let X be a normed linear space and M be a closed linear subspace of X. Let $x_0 \in X$ be such that $x_0 \notin M$ and $r = d(x_0, M)$. Show that there is a bounded linear functional f on X such that $f(x_0) = 1$, f(y) = 0 for all $y \in M$ and $||f|| = \frac{1}{r}$.
 - (b) Let X be a normed space and Y be a Banach space.
 - (i) Define the operator norm on the linear space B(X, Y).
 - (ii) Show that B(X, Y) is complete under this norm.
 - (iii) Use the result in (ii) to show that the dual space of every normed space is a Banach space.

MMT-006

 $\boldsymbol{3}$

3

4

4

6

- 4. (a) Let X be a Banach space and Y be a normed space and \mathscr{A} be a subset of BL(X, Y) such that for every $x \in X$, there exists a positive real number k_x such that $|| F(x) || \le k_x \forall F \in \mathscr{A}$ Then show that $\sup \{|| F || : F \in \mathscr{A}\} < \infty$.
 - (b) Let M, N be closed linear subspaces of a Hilbert space H. If $M \perp N$, prove that M + N is closed.
 - (c) Let $A: l_2 \rightarrow l_2$ be defined by $A(x_1, x_2, ...) = (0, 0, x_3, x_4, ...)$. Prove that A is self-adjoint, positive. Also find \sqrt{A} .

5. (a) Prove that the dual of
$$(\mathbb{R}^2, \|\cdot\|_1)$$
 is
isometrically isomorphic to $(\mathbb{R}^2, \|\cdot\|_n)$.

- (b) If $\{e_n\}$ is an orthonormal sequence in a Hilbert space H and if A is a compact operator on H, show that $Ae_n \rightarrow 0$.
- (c) Let X = C[0, 1]. Find a bounded linear operator T on X whose spectrum $\sigma(T)$ is [2, 3].

6. (a) Let
$$a_1, a_2 \in \mathbb{R}$$
. For $x = (x_1, x_2) \in \mathbb{R}^2$, let
 $||x|| = |a_1x_1| + |a_2x_2|$. Is this always a
norm on \mathbb{R}^2 ? Justify your answer.

MMT-006

3

P.T.O.

4

3

3

 $\mathbf{5}$

 \mathcal{B}

 $\mathbf{2}$

 $\boldsymbol{3}$

- (b) (i) State Riesz Representation Theorem for Hilbert spaces.
 - (ii) Let $H = \mathbb{R}^3$ and let $f : H \to \mathbb{R}$ be given by $f(x_1, x_2, x_3) = x_1$. Find a $y \in H$ that represents f.
- (c) Let X and Y be two normed spaces and T : X \rightarrow Y be a linear, continuous and surjective operator. Prove that the operator $\tilde{T}: X/\text{Ker } T \rightarrow Y$, $\tilde{T}(x + \text{Ker } T) = Tx \forall x \in X$, is a

well-defined, bijective, linear and continuous operator.

7. (a) Define
$$T: C[0, 1] \to C[0, 1]$$
 by

 $Tx(t) = tx(t), 0 \le t \le 1.$

Prove that T is a bounded linear map and compute its norm.

- (b) State Projection Theorem for Hilbert spaces. Illustrate with an example.
- (c) Let A be a bounded linear operator on a Hilbert space H. Obtain the relations between Z(A) and $R(A^*)$ and between R(A) and $Z(A^*)$.

MMT-006

4

 \mathcal{B}

3

4

4

3