# M．Sc．（MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE） 

ロロッF
M．Sc．（MACS）

Term－End Examination<br>June， 2014

## MMT－005 ：COMPLEX ANALYSIS

Time ： $1 \frac{1}{2}$ hours
Maximum Marks ： 25

Note：Question 1 is compulsory．Attempt any three other questions．Use of calculators is not allowed．

1．State giving reasons whether the following statements are true or false ：

$$
2 \times 5=10
$$

（a）The hyperbola $x^{2}-y^{2}=1$ under the mapping $w=-z^{2}$ is mapped into the straight line $u=1$ ．
（b）If $f(z)$ is differentiable at $z_{0}$ then $|f(z)|$ is also differentiable at $\mathrm{z}_{0}$ ．
（c）All the singular points of $f(z)=\cot z$ are isolated．
（d）$f(z)=\sin z$ is bounded．
(e) If $\mathrm{C}_{\mathrm{R}}$ denotes any positively oriented circle with centre at the origin and of radius R , then $\lim _{R \rightarrow \infty} \int_{C_{R}} \frac{\log z}{z^{2}} d z=0$.
2. (a) If $f(z)$ is analytic in a domain $D$ such that $f(z)$ is real for each $Z \in D$, then prove that $\mathrm{f}(\mathrm{z})$ must be a constant function.
(b) Let $T(z)=\frac{2 z+1}{2+z}$. Show that whenever $|z| \leq 1$, then $|T(z)| \leq 1$. Find fixed points of $T(z)$.
3. (a) It is given that $f(z)$ is an entire function, $f(z)$ has a zero of order at least 3 at $z=0$ such that $|f(z)| \leq 2|z|^{3}$ for all $z$. Prove that $f(z)$ is a polynomial of degree at most 3 .
(b) Find all the roots of the equation $\cosh \mathrm{z}=3$.
4. (a) Let $f(z)=u(x, y)+i v(x, y)$ be a function continuous on a closed and bounded region $R$ and analytic in the interior of R. Suppose $\mathrm{f}(\mathrm{z})$ is non-constant function in the interior of $R$. Then apply the maximum modulus principle to $e^{i f(z)}$ to prove that the minimum of $\mathrm{v}(\mathrm{x}, \mathrm{y})$ occurs on the boundary of $R$ and never in the interior.
(b) Let C be the positively oriented circle

$$
|z|=2 . \text { If } g(w)=\int_{C} \frac{z^{2}-4 z+1}{z-w} d z
$$

( $|\mathrm{w}| \neq 2$ ), then find $g(1)$. Further, prove that $g(w)=0$ for $|w|>2$.
5. Evaluate $\int_{0}^{2 \pi} \frac{\mathrm{~d} \theta}{2-\sin \theta}$.

