M．Sc．（MATHEMATICS WITH APPLICATIONS

ロロロビ IN COMPUTER SCIENCE）

M．Sc．（MACS）

Term－End Examination
June， 2014

MMT－003 ：ALGEBRA

Time ： 2 hours
Maximum Marks ： 50
（Weightage 70\％）

Note：Question no． 1 is compulsory．Do any four questions from questions 2 to 6．Calculators are not allowed．

1．State which of the following statements are true and which are false．Give reasons for your answer．

$$
2 \times 5=10
$$

（i）There is a non－trivial group homomorphism from a cyclic group of order 10 to S_{5} ．
（ii）All the irreducible polynomials over \mathbf{R} are quadratic．
（iii）The group $\mathrm{SO}_{2}(\mathbf{C})$ is bounded．
(iv) For a character χ of degree $d>1$ of a finite group G, there is an element $g \in G$ with $|\chi(\mathrm{g})|=\mathrm{d}^{2}$.
(v) In any finite abelian group all Sylow subgroups are cyclic.
2. (a) Determine the number of elements of order 13 in a group of order 156.
(b) The matrix $A=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$ has order 3 and therefore, it defines a matrix representation $\left\{1, A, A^{2}\right\}$ of the cyclic group G of order 3. Find a G-invariant form on \mathbf{C}^{2}.
(c) Show that any subsemigroup of a finite group G is a subgroup of G. Is this statement true for subsemigroups in any infinite group?
3. (a) Find the number of abelian groups of order 392. Find the invariant factors of any one of the possible abelian non-cyclic groups of order 392.
(b) Write down the conjugary classes of D_{5}. Interpreting D_{5} as a symmetry group of a regular pentagon, find the stabiliser of a vertex in a regular pentagon.
5. Which of the following statements are true, and which are not? Give reasons for your answers.
(i) Eigenvectors corresponding to the same eigenvalues of a matrix are always linearly dependent.
(ii) If all the eigenvalues of a matrix A are zero, then A is similar to the zero matrix.
(iii) The sum of two normal matrices of order n is normal.
(iv) If A is a matrix with determinant 1 , then A is a unitary matrix.
(v) If the characteristic polynomial of a matrix is $(x-3)^{2}(x-2)^{2}$, then its minimal polynomial can be $(x-3)^{2}$.

